Deep Reinforcement Learning on a Parking
Environment

CS 5180 Final Project Report

Atharva Jamsandekar
Northeastern University
Boston, MA

jamsandekar.a@northeastern.edu

Abstract—Autonomous parking systems have
garnered significant attention in recent years due to their
potential to enhance driving safety, convenience, and
efficiency. Deep Reinforcement Learning (Deep RL) has
emerged as a promising approach for training agents to
navigate complex environments and make optimal
decisions in real-time. This report provides a
comprehensive review of how Deep RL techniques can be
utilized for autonomous parking. The report begins by
outlining the fundamental challenges of autonomous
parking, including continuous state space, decision-
making, and continuous action space. It then presents an
overview of Deep RL, highlighting its ability to learn
complex behaviors through interaction with the
environment and reward feedback. Various Deep RL
architectures, including Proximal Policy Optimization
(PPO), Deep Deterministic Policy Gradient (DDPG), and
Soft Actor-Critic (SAC), are discussed in the context of
autonomous parking.

Keywords - (Reinforcement Learning,
continuous spaces)

Deep RL,

. INTRODUCTION AND MOTIVATION
A. Background

Parking tasks pose a significant challenge forautonomous
vehicles, requiring precise navigation to designated spots.
Reinforcement learning (RL) provides a promising avenue
for training ego-vehicles to master parking maneuvers
autonomously. In RL-based approaches, ego-vehicles learn
parking policies through interaction with the environment,
leveraging algorithms like Deep Deterministic Policy
Gradient (DDPG) or Proximal Policy Optimization (PPO)
and Soft Actor Critic (SAC) to navigate to specified spots
with the correct orientation. RL enables vehicles to adapt to
diverse parking scenarios and environmental conditions,
offering flexibility in reward design and exploration
strategies. Ultimately, RL empowers autonomous vehiclesto
achieve efficient and safe parking in urban environments,
contributing to the advancement of autonomous driving
technology.

B. Problem statement

The objective is to design and implement a goal-conditioned
continuous control task for an ego-vehicle, requiring it to
autonomously navigate and park within a predefined space
while aligning with the specified heading.

Aditya Aspat
Northeastern University
Boston,MA
aspat.a@northeastern.edu

C. Introduction to DDPG

Deep Deterministic Policy Gradient (DDPG) combines
elements of both deep learning and policy gradients. It is
designed specifically for environments with continuous
action spaces, making it suitable for a wide range of tasks
including robotics, control systems, and games.

Architecture: Thearchitecture of DDPG consists of two main
components: an actornetwork and a critic network. The actor
network takes the current state as input and outputs a
continuousaction, representing the agent's policy. The critic
network, on the otherhand, takes both the state and the action
as input and predicts the expected return, which is used to
evaluate the action taken by the actor.

Key Features: One of the key featuresof DDPG is its use of

target networks. These are copies of the actor and critic
networks periodically updated with the main networks'
parameters. This helps stabilize training by providing more
consistent target values for the critic and reducing the
likelihood of overestimation.

Exploration: Exploration in DDPG is achieved through
adding noise to the actions selected by the actor network.
This noise encourages the agent to explore differentactions,
allowing it to discover potentially better policies. Commonly
used noise sources include Ornstein-Uhlenbeck noise or
simple random noise sampled from a distribution.

D. Introductionto PPO

Proximal Policy Optimization (PPO) is a versatile algorithm
tailored to seamlessly navigate continuous action spaces,
rendering it indispensable across a spectrum of domains
including robotics, control systems, and gaming scenarios.
PPO differs from SAC and DDPG as it is an on-policy
algorithm, while the other two are off-policy algorithms.

Architecture: PPO's architecture revolves around a pivotal
actor-critic framework, comprising an actor network and a
critic network. The actor network interprets the current state
to produce actions, effectively shaping the agent's policy.
Simultaneously, the critic network evaluatesthese actionsin
the context of the state, offering insights into the expected
return and guiding the actor's decision-making process.

Key Features: PPO hasthe distinctive advantage in balancing
exploration and exploitation through clipped objectives. This
approach ensuresstable and efficient trainingby constraining
policy updates within a proximity threshold, preventing
drastic policy changes that could hinder learning progress.
Moreover, PPO integrates an adaptive learning rate
mechanism, dynamically adjusting learning rates to suit the

training dynamics, thereby enhancing convergence speed and
robustness.

Exploration: PPO apart from the clipping feature doesn’t
have a direct way to promote exploration. The usual method
of promoting exploration involves perturbing the actor's
policy through additive noise or stochastic policies,
encouraging the agent to explore alternative strategies and
robustly adapt to various environmental dynamics. These
exploration techniques enable PPO to effectively navigate
complex and continuous action spaces, facilitating efficient
learning and adaptation.

E. Introductionto SAC

The Soft Actor-Critic (SAC) algorithm stands out as a
versatile approach tailored for continuousaction spaces, ideal
for this domain involving continuous action space of steering
& acceleration. SAC uses a dual-critic architecture that
allows to control variance in the updates to the policy.

Architecture: SAC is comprised of two pivotal components:
an actor network and two distinct critic networks. The actor
network interprets the current state to produce continuous
actions, effectively shaping the agent's policy. Meanwhile,
the critic networksevaluate the state-action pairs, considering
the expected return, guiding the actor towards optimal
decision-making.

Key Features: SAC also uses target networks to enhance
stability during updates like DDPG. These target networks
are synchronized with the primary ones using the soft update
technique, contributing to training stability by furnishing
consistent target values for the critics. It helps mitigate
overestimation concerns, ensuring smoother convergence
and more reliable performance.

Exploration: SAC's exploration strategy is mainly based on
leveraging entropy maximization. Entropy maximization
fosters exploration while optimizing policy entropy,
bolstering adaptability and robustness. The Entropy term is
part of the Loss function of SAC that promotes exploration.
Along with Entropy maximization, there are flavors of SAC
that include additive noise in action selection.

F. Feature Association

Feature association using Semi-Gradient SARSA is a
reinforcement learning technique aimed at learning value
functions in large state spaces with limited computational
resources. It is particularly useful when dealing with high-
dimensional input spaces by using feature representations
instead of the raw state space. Feature association refers to
the association of features of the state space with their
corresponding values. In Semi-Gradient SARSA, this is
achieved through a linear function approximation, where
each feature is associated with a weight that represents its
importance in predicting the value of a state-action pair.

Features: The architecture of Semi-Gradient SARSA
involves defining a set of features that capture relevant
information about the state space. These features can be
handcrafted based on domain knowledge or learned
automatically from the data using techniques such as neural
networks or kernel methods. Once the feature representation
is established, Semi-Gradient SARSA uses a linear function
approximation to estimate the wvalue function. This
approximation takes the form of a weighted sum of the
features, where the weights are updated iteratively through
the learning process.

Exploration: Typically achieved through epsilon-greedy
action selection, where with probability epsilon, a random
action is chosen to encourage exploration, and with
probability 1 - epsilon, the action with the highest estimated
value is selected.

1. SIMULATION ENVIRONMENT

The simulation environment used for this task is the Parking
Environmentthatis a partof OpenAl Gymnasium. The task
athand is to attain a desired position and orientation of the
vehicle in the parking lot.

The observation space is of type: "KinematicsGoal". In this
case, it suggests that the observations represent kinematic
information related to achieving a specific goal (the parking
lot goal position).

The state features are: ['x', y', 'vX', 'vy', ‘cos_h', 'sin_h']

These are the features or variables included in each
observation. Each feature provides specific information about
the state of the environment. Here's a breakdown:

'X": The x-coordinate position.

'v': The y-coordinate position.

'vx": The velocity along the x-axis.

'vy": The velocity along the y-axis.

‘cos_h": The cosine of the heading direction.
'sin_h": The sine of the heading direction.

In reward calculation, a weighted Lp norm measures the
distance between achieved and desired goal. The achieved
and desired goals are of the state vector format. The rewards
are weighted according to a tunable “reward_weights”
parameter.

The simulation environment has the following additional
features:

e Adding walls between the lots.
e Adding parked vehicles.

. PROPOSED SOLUTION

A. Implementation of DDPG

ARCHITECTURE:

Actor Model: The actor neural network generates actions
based on observed states. It is made up of three completely
connected layers: an input layer with the size of the state
space, two hidden levels with 512 and 256 unitseach,and an
output layer with the size of the action space. The hidden
layers use ReLU activation functions to introduce non-
linearity, while the output layeris activated by a hyperbolic
tangent (tanh) function scaled by the maximal action value.

Critic Model: The critic neural network measures the quality
of state-action pairs by estimating Q-values. Ittakesboth the
state and the action as input, concatenates them, and feeds
them through three fully connected layers: the input layer,
which is the size of the concatenated state and action spaces,
followed by two hidden layers of 512 and 256 units, and the
output layer, which is asingle unit representing the Q-value.
The hidden layers use ReLU activations.

Target Networks: Two sets of target networks, one for the
actor and one for the critic, are implemented to stabilize
training. These target networks are copies of the main
networks and are periodically updated with soft updates to
their parameters.

FEATURES:

Replay Buffer: The replay buffer holds the experiences
observed by the agent when interactingwith the environment.
Itis constructed asa deque with a defined capacity, allowing
for efficient random sampling of events during training. This
allows the agent to break down correlations between
consecutive encounters, facilitating off-policy learning.

Ornstein-Uhlenbeck Noise: Ornstein-Uhlenbeck noise is
added to the agent's actions to facilitate exploration. This
noise mechanism generates temporal correlations between
consecutive actions, allowing for smootherexploration of the
action space. It is parameterized by scale, mean (mu), theta,
and sigma, which allows for greater control over the
exploration process.

B. Implementation of PPO

ARCHITECTURE:

Actor Model: The actor neural network generates actions
based on observed states. It is made up of three completely
connected layers: an input layer with the size of the state
space, two hidden levels with 512 and 256 unitseach,and an
output layer with the size of the action space. The hidden
layers use hyperbolic activation functions to introduce non-
linearity, also the output layer is activated by a hyperbolic
tangent (tanh) function scaled by the maximal action value.

Critic Model: The critic neural network measures the quality
of state-action pairs by estimating Q-values. Ittakesboth the
state and the action as input, concatenates them, and feeds
them through three fully connected layers: the input layer,
which is the size of the concatenated state and action spaces,
followed by two hidden layers of 512 and 256 units, and the
output layer, which is a single unit representing the Q-value.
The hidden layers use hyperbolic tangent (tanh) activations.

FEATURES:

Replay Buffer: The replay buffer holds the experiences
observed by the agent when interactingwith the environment.
Itis constructed asa deque with a defined capacity, allowing
for efficient random sampling of events during training. This
allows the agent to break down correlations between
consecutive encounters, facilitating off-policy learning.

Clipping Objective: The updates according to the Loss
Objective function are clipped using the parameter Epsilon to
avoid large updates that are unstable and sub-optimal. The
Advantage valueis calculated according to the Monte-Caro
return of the timestep and is multiplied by the ratio of log-
odds of the probability of the action before and afterupdate.
The update is then clipped with epsilon which eliminates
high-variance updates.

C. Implementation of SAC

ARCHITECTURE:

Actor Model: The actor neural network generates actions
based on observed states. It is made up of three completely
connected layers: an input layer with the size of the state
space, two hidden levels with 256 units each, and an output
layer with the size of the action space. The hidden layers do
not use activation, while the output layer is activated by a
hyperbolic tangent (tanh) function scaled by the maximal
action value.

Critic Model: The critic neural network measures the quality
of state-action pairs by estimating Q-values. SAC uses a bi-
critic architecture to increase stability in the updates. The
update is calculated according to the Critic network which
hasthe lowest Loss Objective Value. The Critic models take
both the state and the action as input, concatenates them, and
feeds them through three fully connected layers: the input
layer, which is the size of the concatenated state and action
spaces, followed by two hidden layers 256 units each, and the
output layer, which is a single unit representing the Q-value.
The hidden layers use ReLU activations.

Target Networks: Three sets of target networks, one for the
actorand two forthe two critics, are implemented to stabilize
training. These target networks are copies of the main
networks and are periodically updated with soft updates to
their parameters according to the hyperparameter ‘tau’.

FEATURES:

Replay Buffer: The replay buffer holds the experiences
observed by the agent when interactingwith the environment.
Itis constructed asa deque with a defined capacity, allowing
for efficient random sampling of events during training. This

allows the agent to break down correlations between
consecutive encounters, facilitating off-policy learning.

Entropy Maximization: Itserves asa clever strategy to inject
randomness into decision-making. By maximizing entropy,
SAC encourages exploration by making its decisions less
predictable, leading to a more diverse range of actions tried
out. SAC's temperature parameter governs the degree of
randomness injected into its policy, allowing for fine-tuning
of exploration versus exploitation. The parameter alpha
controls the temperature.

D. Implementation of Feature Association

ARCHITECTURE

Q-Value Calculation (get_q_value): This function calculates
the Q-value fora given state-action pairusing linear function
approximation. It takesthe feature representation of the state,
weight vector corresponding to the action, and state-action
pairasinputs. The Q-value is computed asthe dot product of
the weight vector and the feature representation.

Action Selection (car_e_greedy): The car_e_greedy function
implements an epsilon-greedy policy foraction selection. It
selects a random action with probability epsilon and the
action with the highest estimated Q-value otherwise. This
strategy balances exploration and exploitation during the
learning process.

State Discretization (discretize_state): This function
discretizes the continuous state spaceinto a finite set of states.
It maps each dimension of the state to its corresponding bin
index, ensuring that the state falls within the valid range of
bins.

Feature Extraction (feature_x): The feature_x function
extracts features from the discretized state representation. It
generatesa one-hot encoded feature vector based onthe index
of the discretized state, representing the presence of a statein
the state space.

Action Step (stepper): The stepper function updates the
agent's current speed based on the selected action. It
increments or decrementsthe agent's velocity alongthe x and
y axesaccordingto the chosen action, ensuring that the speed
remains within the valid range [-1, 1].

V. RESULTS

The Results of the discussed algorithms are compared in
terms of their losses, returns and episode lengths during their
training. All the algorithms are trained for 5000 episodes with
a timeout of 200 timesteps. The episode ends if the goal is
reached or due to timeout. Section VII has the video links
which show the compilation of the training framesevery 500
episodes (i.e. 10 episodes in total). The video providesa more
intuitive way to analyze the agent’s progress throughout the
training.

A. DDPG

DDPG shows the best performance amongst all the other
algorithms as it makes drastic progress around the 1500-
episode mark and learns the optimal policy around the 2400-
episode mark. The slight variance in the plots after learning
optimal policy, are due to the inclusion of the OU Noise for
exploration.

Losses

25 —— Losses (Raw Data)
Losses (Moving Average)

15

Loss.

1.0

05

0.0

5

0 1000 2000 3000 4000 5000
Batch

Lengths

Lengths (Raw Data)
Lengths (Moving Average)

Length

o 1000 2000 3000 4000 5000
Episode

Returns

—100

-150

—200

Return

-250

—300

=350

Returns (Raw Data)
—400 Returns (Moving Average)

0 1000 2000 3000 4000 5000
Episode

B. PPO

The performance of PPO is mediocre compared to DDPG as
it has high fluctuations in its Loss function values making it
highly unstable. It is believed that thisis due to a sub-optimal
clipping hyperparameterselection (Epsilon) that leads to the
high fluctuations. The PPO algorithm is rather conservative
in its final policy which is why it accumulates a higher
negative reward and runs for a longer episode length. It can
be concluded that the final policy is near-optimaland training
it for more episodes may lead to better results.

Losses

40000
—— Losses (Raw Data)
Losses (Moving Average)
30000
20000
2 10000
2
0 ‘ ‘“"l l"wm'w" '
~10000
—20000 T T T T T T
o 1000 2000 3000 4000 5000
Batch
Lengths
200
180
160
140
5
5
)
g 1204
100
80 4
60 1 Lengths (Raw Data)
Lengths (Moving Average)
o 1000 2000 3000 4000 5000
Episode
Returns
_50-
-100
E
2
g -150
—200
—250 Returns (Raw Data)
Returns (Moving Average)
0 1000 2000 3000 4000 5000
Episode

SAC shows promising performance with better results than
PPO but still not as good as DDPG. Like DDPG, the agent
learns the optimal policy around the 2000-episode mark.
Contrary to DDPG, it shows less variance after learning the
optimal policy. The SAC and DDPG agent show the best
performance compared to the other two agents and are
differentiated by a large margin.

Losses

100
—— Losses (Raw Data)
Losses (Moving Average)
80
60
2
9 a0 “
20
Nty
o
0 1000 2000 3000 4000 5000
Batch
Lengths
200 4 Lengths (Raw Data)
Lengths (Moving Average)
175
150
£ 1259
&
2
E]
100
75
50
25 4
0 1000 2000 3000 4000 5000
Episode
Returns
0
504
—100 4
-150 4
5 —200
&
-250
—300 4
=350 4
Returns (Raw Data)
400 Returns (Moving Average)
0 1000 2000 3000 4000 5000

Episode

D. Feature Association

Feature Association fails to learn a policy that leads it towards
the goal. In this case, walls were added to give it initiative
through rewards to stay in the parking lot. The final policy it
learnt after 5000-epsiodes was to keep circling around the
plot to avoid accruing the high collision penalty. The reason
for the poor learning curve was the lack of orientation and
velocity information that was encoded while discretizing the
features. This led to it learning to only stay within the
perimeter of the lot.

Lengths

100

60 Lengths (Raw Data)
Lengths (Moving Average)

40 4

o 1000 2000 3000 4000 5000
Episode

Returns

Returns (Raw Data)
Returns (Moving Average)

o 1000 2000 3000 4000 5000
Episode

V. CHALLENGES FACED

Attempting feature association by discretizing continuous
state and action space posed significant challenges, primarily
due to the vast numberof resulting states. Discretization led
to a state space explosion, exacerbating the curse of
dimensionality and resulting in a loss of precision. The agent
struggled with sparse rewards and limited generalization,
hindering its ability to learn robust policies. While
discretization may be suitable for low-dimensional
environments, it proved impractical for high-dimensionaland
complex domains. Alternative methods, such as function
approximation using neural networks or kernel methods, are
needed to effectively handle continuous state and action
spaces in reinforcement learning.

VI. CONCLUSION AND FUTURE WORK

The implemented algorithms show a varying level of
performance with DDPG performing qualitatively the best,
while the Feature Association lacks the diversity in features
to navigate through diverse orientations. The Deep RL
approaches show good performance for this domain
involving continuous observation and action space.

The future work in the Parking environment domain should
include the inclusion of additional configurations like parking
walls and parked vehicles to add an additional layer of
complexity to the problem solved in the scope of this current
project. Naively applying the current approaches doesn’t
provide desirable results. Considerable work is needed to
encode additionalinformation about possible collisions in the
model's observation space, possibly through parking sensors.

The work in this project forms the basis for extending the
work in the Autonomous vehicle research domain. Some
interesting problems for the team members include:
e Learning Racing Maneuvers like Blocking,
Nudging and Overtaking for Autonomous Racing.
e Exploration Algorithms for a Reconnaissance
Robot.
e BehaviorPlanning for Lane Switching and Obstacle
Avoidance.
The above-mentioned problems are not exhaustive but have
similar interesting features of continuous observation and
action space.

VII. LINKS

Codes:
DDPG
PPO
SAC
Feature Association

Videos:
DDPG
PPO
SAC
Feature Association

VIII. REFERENCES

https://spinningup.openai.com/en/latest/algorithms/ddpag.ht
ml

https://openai.com/research/openai-baselines-ppo
https://spinningup.openai.com/en/latest/algorithms/sac.html
https://michaeloneill.github.io/RL -tutorial.htm|
https://towardsdatascience.com/deep-deterministic-policy-
gradients-explained-2d94655a9b7b
https://towardsdatascience.com/proximal-policy-
optimization-ppo-explained-abed1952457b
https://github.com/denisyarats/pytorch_sac

