

Deep Reinforcement Learning on a Parking
Environment

CS 5180 Final Project Report

Atharva Jamsandekar Aditya Aspat
Northeastern University Northeastern University

Boston, MA Boston,MA

jamsandekar.a@northeastern.edu aspat.a@northeastern.edu

Abstract—Autonomous parking systems have

garnered significant attention in recent years due to their

potential to enhance driving safety, convenience, and

efficiency. Deep Reinforcement Learning (Deep RL) has
emerged as a promising approach for training agents to

navigate complex environments and make optimal

decisions in real-time. This report provides a

comprehensive review of how Deep RL techniques can be

utilized for autonomous parking. The report begins by
outlining the fundamental challenges of autonomous

parking, including continuous state space, decision-

making, and continuous action space. It then presents an

overview of Deep RL, highlighting its ability to learn
complex behaviors through interaction with the

environment and reward feedback. Various Deep RL

architectures, including Proximal Policy Optimization

(PPO), Deep Deterministic Policy Gradient (DDPG), and
Soft Actor-Critic (SAC), are discussed in the context of

autonomous parking.

Keywords - (Reinforcement Learning, Deep RL,

continuous spaces)

I. INTRODUCTION AND MOTIVATION

A. Background

Parking tasks pose a significant challenge for autonomous
vehicles, requiring precise navigation to designated spots.
Reinforcement learning (RL) provides a promising avenue
for training ego-vehicles to master parking maneuvers
autonomously. In RL-based approaches, ego-vehicles learn
parking policies through interaction with the environment,
leveraging algorithms like Deep Deterministic Policy
Gradient (DDPG) or Proximal Policy Optimization (PPO)
and Soft Actor Critic (SAC) to navigate to specified spots
with the correct orientation. RL enables vehicles to adapt to
diverse parking scenarios and environmental conditions,
offering flexibility in reward design and exploration
strategies. Ultimately, RL empowers autonomous vehicles to
achieve efficient and safe parking in urban environments,
contributing to the advancement of autonomous driving
technology.

B. Problem statement

The objective is to design and implement a goal-conditioned
continuous control task for an ego-vehicle, requiring it to
autonomously navigate and park within a predefined space
while aligning with the specified heading.

C. Introduction to DDPG

 Deep Deterministic Policy Gradient (DDPG) combines
elements of both deep learning and policy gradients. It is
designed specifically for environments with continuous

action spaces, making it suitable for a wide range of tasks
including robotics, control systems, and games.

Architecture: The architecture of DDPG consists of two main
components: an actor network and a critic network. The actor
network takes the current state as input and outputs a
continuous action, representing the agent's policy. The critic
network, on the other hand, takes both the state and the action
as input and predicts the expected return, which is used to
evaluate the action taken by the actor.

 Key Features: One of the key features of DDPG is its use of
target networks. These are copies of the actor and critic
networks periodically updated with the main networks'
parameters. This helps stabilize training by providing more
consistent target values for the critic and reducing the
likelihood of overestimation.

Exploration: Exploration in DDPG is achieved through
adding noise to the actions selected by the actor network.
This noise encourages the agent to explore different actions,
allowing it to discover potentially better policies. Commonly
used noise sources include Ornstein-Uhlenbeck noise or
simple random noise sampled from a distribution.

D. Introduction to PPO

Proximal Policy Optimization (PPO) is a versatile algorithm

tailored to seamlessly navigate continuous action spaces,

rendering it indispensable across a spectrum of domains

including robotics, control systems, and gaming scenarios.
PPO differs from SAC and DDPG as it is an on-policy

algorithm, while the other two are off-policy algorithms.

Architecture: PPO's architecture revolves around a pivotal

actor-critic framework, comprising an actor network and a
critic network. The actor network interprets the current state

to produce actions, effectively shaping the agent's policy.

Simultaneously, the critic network evaluates these actions in

the context of the state, offering insights into the expected
return and guiding the actor's decision-making process.

Key Features: PPO has the distinctive advantage in balancing

exploration and exploitation through clipped objectives. This
approach ensures stable and efficient training by constraining

policy updates within a proximity threshold, preventing

drastic policy changes that could hinder learning progress.

Moreover, PPO integrates an adaptive learning rate
mechanism, dynamically adjusting learning rates to suit the

training dynamics, thereby enhancing convergence speed and
robustness.

Exploration: PPO apart from the clipping feature doesn’t

have a direct way to promote exploration. The usual method
of promoting exploration involves perturbing the actor's

policy through additive noise or stochastic policies,

encouraging the agent to explore alternative strategies and

robustly adapt to various environmental dynamics. These
exploration techniques enable PPO to effectively navigate

complex and continuous action spaces, facilitating efficient

learning and adaptation.

E. Introduction to SAC

The Soft Actor-Critic (SAC) algorithm stands out as a

versatile approach tailored for continuous action spaces, ideal

for this domain involving continuous action space of steering

& acceleration. SAC uses a dual-critic architecture that

allows to control variance in the updates to the policy.

Architecture: SAC is comprised of two pivotal components:

an actor network and two distinct critic networks. The actor

network interprets the current state to produce continuous

actions, effectively shaping the agent's policy. Meanwhile,

the critic networks evaluate the state-action pairs, considering

the expected return, guiding the actor towards optimal

decision-making.

Key Features: SAC also uses target networks to enhance

stability during updates like DDPG. These target networks

are synchronized with the primary ones using the soft update

technique, contributing to training stability by furnishing

consistent target values for the critics. It helps mitigate

overestimation concerns, ensuring smoother convergence

and more reliable performance.

Exploration: SAC's exploration strategy is mainly based on

leveraging entropy maximization. Entropy maximization

fosters exploration while optimizing policy entropy,

bolstering adaptability and robustness. The Entropy term is

part of the Loss function of SAC that promotes exploration.

Along with Entropy maximization, there are flavors of SAC

that include additive noise in action selection.

F. Feature Association

Feature association using Semi-Gradient SARSA is a

reinforcement learning technique aimed at learning value

functions in large state spaces with limited computational

resources. It is particularly useful when dealing with high-

dimensional input spaces by using feature representations

instead of the raw state space. Feature association refers to

the association of features of the state space with their

corresponding values. In Semi-Gradient SARSA, this is

achieved through a linear function approximation, where

each feature is associated with a weight that represents its

importance in predicting the value of a state-action pair.

Features: The architecture of Semi-Gradient SARSA
involves defining a set of features that capture relevant

information about the state space. These features can be

handcrafted based on domain knowledge or learned

automatically from the data using techniques such as neural
networks or kernel methods. Once the feature representation

is established, Semi-Gradient SARSA uses a linear function

approximation to estimate the value function. This

approximation takes the form of a weighted sum of the
features, where the weights are updated iteratively through

the learning process.

Exploration: Typically achieved through epsilon-greedy
action selection, where with probability epsilon, a random

action is chosen to encourage exploration, and with

probability 1 - epsilon, the action with the highest estimated

value is selected.

II. SIMULATION ENVIRONMENT

The simulation environment used for this task is the Parking
Environment that is a part of OpenAI Gymnasium. The task

at hand is to attain a desired position and orientation of the
vehicle in the parking lot.

The observation space is of type: "KinematicsGoal". In this
case, it suggests that the observations represent kinematic
information related to achieving a specific goal (the parking
lot goal position).

The state features are: ['x', 'y', 'vx', 'vy', 'cos_h', 'sin_h']

These are the features or variables included in each
observation. Each feature provides specific information about
the state of the environment. Here's a breakdown:

'x': The x-coordinate position.

'y': The y-coordinate position.

'vx': The velocity along the x-axis.

'vy': The velocity along the y-axis.

'cos_h': The cosine of the heading direction.

'sin_h': The sine of the heading direction.

In reward calculation, a weighted Lp norm measures the
distance between achieved and desired goal. The achieved
and desired goals are of the state vector format. The rewards
are weighted according to a tunable “reward_weights”
parameter.

The simulation environment has the following additional
features:

• Adding walls between the lots.

• Adding parked vehicles.

III. PROPOSED SOLUTION

 A. Implementation of DDPG

ARCHITECTURE:

Actor Model: The actor neural network generates actions

based on observed states. It is made up of three completely
connected layers: an input layer with the size of the state

space, two hidden levels with 512 and 256 units each, and an

output layer with the size of the action space. The hidden

layers use ReLU activation functions to introduce non-

linearity, while the output layer is activated by a hyperbolic
tangent (tanh) function scaled by the maximal action value.

Critic Model: The critic neural network measures the quality

of state-action pairs by estimating Q-values. It takes both the
state and the action as input, concatenates them, and feeds

them through three fully connected layers: the input layer,

which is the size of the concatenated state and action spaces,

followed by two hidden layers of 512 and 256 units, and the
output layer, which is a single unit representing the Q-value.

The hidden layers use ReLU activations.

Target Networks: Two sets of target networks, one for the

actor and one for the critic, are implemented to stabilize
training. These target networks are copies of the main

networks and are periodically updated with soft updates to

their parameters.

FEATURES:

Replay Buffer: The replay buffer holds the experiences

observed by the agent when interacting with the environment.

It is constructed as a deque with a defined capacity, allowing

for efficient random sampling of events during training. This
allows the agent to break down correlations between

consecutive encounters, facilitating off-policy learning.

Ornstein-Uhlenbeck Noise: Ornstein-Uhlenbeck noise is
added to the agent's actions to facilitate exploration. This

noise mechanism generates temporal correlations between

consecutive actions, allowing for smoother exploration of the

action space. It is parameterized by scale, mean (mu), theta,

and sigma, which allows for greater control over the
exploration process.

B. Implementation of PPO

ARCHITECTURE:

Actor Model: The actor neural network generates actions
based on observed states. It is made up of three completely

connected layers: an input layer with the size of the state

space, two hidden levels with 512 and 256 units each, and an

output layer with the size of the action space. The hidden
layers use hyperbolic activation functions to introduce non-

linearity, also the output layer is activated by a hyperbolic

tangent (tanh) function scaled by the maximal action value.

Critic Model: The critic neural network measures the quality

of state-action pairs by estimating Q-values. It takes both the

state and the action as input, concatenates them, and feeds

them through three fully connected layers: the input layer,

which is the size of the concatenated state and action spaces,

followed by two hidden layers of 512 and 256 units, and the

output layer, which is a single unit representing the Q-value.

The hidden layers use hyperbolic tangent (tanh) activations.

FEATURES:

Replay Buffer: The replay buffer holds the experiences
observed by the agent when interacting with the environment.

It is constructed as a deque with a defined capacity, allowing

for efficient random sampling of events during training. This

allows the agent to break down correlations between

consecutive encounters, facilitating off-policy learning.

Clipping Objective: The updates according to the Loss

Objective function are clipped using the parameter Epsilon to

avoid large updates that are unsta ble and sub-optimal. The
Advantage value is calculated according to the Monte-Carlo

return of the timestep and is multiplied by the ratio of log-

odds of the probability of the action before and after update.

The update is then clipped with epsilon which eliminates
high-variance updates.

C. Implementation of SAC

ARCHITECTURE:

Actor Model: The actor neural network generates actions
based on observed states. It is made up of three completely

connected layers: an input layer with the size of the state

space, two hidden levels with 256 units each, and an output

layer with the size of the action space. The hidden layers do

not use activation, while the output layer is activated by a
hyperbolic tangent (tanh) function scaled by the maximal

action value.

Critic Model: The critic neural network measures the quality
of state-action pairs by estimating Q-values. SAC uses a bi-

critic architecture to increase stability in the updates. The

update is calculated according to the Critic network which

has the lowest Loss Objective Value. The Critic models take
both the state and the action as input, concatenates them, and

feeds them through three fully connected layers: the input

layer, which is the size of the concatenated state and action

spaces, followed by two hidden layers 256 units each, and the
output layer, which is a single unit representing the Q-value.

The hidden layers use ReLU activations.

Target Networks: Three sets of target networks, one for the

actor and two for the two critics, are implemented to stabilize
training. These target networks are copies of the main

networks and are periodically updated with soft updates to

their parameters according to the hyperparameter ‘tau’.

FEATURES:

Replay Buffer: The replay buffer holds the experiences

observed by the agent when interacting with the environment.

It is constructed as a deque with a defined capacity, allowing

for efficient random sampling of events during training. This

allows the agent to break down correlations between
consecutive encounters, facilitating off-policy learning.

Entropy Maximization: It serves as a clever strategy to inject

randomness into decision-making. By maximizing entropy,
SAC encourages exploration by making its decisions less

predictable, leading to a more diverse range of actions tried

out. SAC's temperature parameter governs the degree of

randomness injected into its policy, allowing for fine-tuning
of exploration versus exploitation. The parameter alpha

controls the temperature.

D. Implementation of Feature Association

ARCHITECTURE

Q-Value Calculation (get_q_value): This function calculates

the Q-value for a given state-action pair using linear function

approximation. It takes the feature representation of the state,

weight vector corresponding to the action, and state-action
pair as inputs. The Q-value is computed as the dot product of

the weight vector and the feature representation.

Action Selection (car_e_greedy): The car_e_greedy function
implements an epsilon-greedy policy for action selection. It

selects a random action with probability epsilon and the

action with the highest estimated Q-value otherwise. This

strategy balances exploration and exploitation during the
learning process.

State Discretization (discretize_state): This function

discretizes the continuous state space into a finite set of states.
It maps each dimension of the state to its corresponding bin

index, ensuring that the state falls within the valid range of

bins.

Feature Extraction (feature_x): The feature_x function
extracts features from the discretized state representation. It

generates a one-hot encoded feature vector based on the index

of the discretized state, representing the presence of a state in

the state space.

Action Step (stepper): The stepper function updates the

agent's current speed based on the selected action. It

increments or decrements the agent's velocity along the x and
y axes according to the chosen action, ensuring that the speed

remains within the valid range [-1, 1].

IV. RESULTS

The Results of the discussed algorithms are compared in

terms of their losses, returns and episode lengths during their

training. All the algorithms are trained for 5000 episodes with

a timeout of 200 timesteps. The episode ends if the goal is

reached or due to timeout. Section VII has the video links

which show the compilation of the training frames every 500

episodes (i.e. 10 episodes in total). The video provides a more

intuitive way to analyze the agent’s progress throughout the

training.

A. DDPG

DDPG shows the best performance amongst all the other

algorithms as it makes drastic progress around the 1500-

episode mark and learns the optimal policy around the 2400-
episode mark. The slight variance in the plots after learning

optimal policy, are due to the inclusion of the OU Noise for

exploration.

B. PPO

The performance of PPO is mediocre compared to DDPG as
it has high fluctuations in its Loss function values making it

highly unstable. It is believed that this is due to a sub-optimal

clipping hyperparameter selection (Epsilon) that leads to the

high fluctuations. The PPO algorithm is rather conservative
in its final policy which is why it accumulates a higher

negative reward and runs for a longer episode length. It can

be concluded that the final policy is near-optimal and training

it for more episodes may lead to better results.

C. SAC

SAC shows promising performance with better results than

PPO but still not as good as DDPG. Like DDPG, the agent

learns the optimal policy around the 2000-episode mark.
Contrary to DDPG, it shows less variance after learning the

optimal policy. The SAC and DDPG agent show the best

performance compared to the other two a gents and are

differentiated by a large margin.

D. Feature Association

Feature Association fails to learn a policy that leads it towards

the goal. In this case, walls were added to give it initiative
through rewards to stay in the parking lot. The final policy it

learnt after 5000-epsiodes was to keep circling around the

plot to avoid accruing the high collision penalty. The reason

for the poor learning curve was the lack of orientation and
velocity information that was encoded while discretizing the

features. This led to it lea rning to only stay within the

perimeter of the lot.

V. CHALLENGES FACED

 Attempting feature association by discretizing continuous

state and action space posed significant challenges, primarily

due to the vast number of resulting states. Discretization led

to a state space explosion, exacerbating the curse of

dimensionality and resulting in a loss of precision. The agent

struggled with sparse rewards and limited generalization,

hindering its ability to learn robust policies. While

discretization may be suitable for low-dimensional

environments, it proved impractical for high-dimensional and

complex domains. Alternative methods, such as function

approximation using neural networks or kernel methods, are

needed to effectively handle continuous state and action

spaces in reinforcement learning.

VI. CONCLUSION AND FUTURE WORK

The implemented algorithms show a varying level of

performance with DDPG performing qualitatively the best,

while the Feature Association lacks the diversity in features

to navigate through diverse orientations. The Deep RL
approaches show good performance for this domain

involving continuous observation and action space.

The future work in the Parking environment domain should

include the inclusion of additional configurations like parking

walls and parked vehicles to add an additional layer of

complexity to the problem solved in the scope of this current
project. Naively applying the current approaches doesn’t

provide desirable results. Considerable work is needed to

encode additional information about possible collisions in the

model's observation space, possibly through parking sensors.

The work in this project forms the basis for extending the

work in the Autonomous vehicle research domain. Some

interesting problems for the team members include:

• Learning Racing Maneuvers like Blocking,

Nudging and Overtaking for Autonomous Racing.

• Exploration Algorithms for a Reconnaissance

Robot.

• Behavior Planning for Lane Switching and Obstacle

Avoidance.

The above-mentioned problems are not exhaustive but have
similar interesting features of continuous observation and

action space.

VII. LINKS

Codes:

 DDPG

PPO
SAC

Feature Association

Videos:

DDPG
PPO

SAC

Feature Association

VIII. REFERENCES

https://spinningup.openai.com/en/latest/algorithms/ddpg.ht

ml

https://openai.com/research/openai-baselines-ppo
https://spinningup.openai.com/en/latest/algorithms/sac.html

https://michaeloneill.github.io/RL-tutorial.html

https://towardsdatascience.com/deep-deterministic-policy-

gradients-explained-2d94655a9b7b

https://towardsdatascience.com/proximal-policy-
optimization-ppo-explained-abed1952457b

https://github.com/denisyarats/pytorch_sac

