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Abstract—Autonomous parking systems have 

garnered significant attention in recent years due to their 

potential to enhance driving safety, convenience, and 

efficiency. Deep Reinforcement Learning (Deep RL) has 
emerged as a promising approach for training agents to 

navigate complex environments and make optimal 

decisions in real-time. This report provides a 

comprehensive review of how Deep RL techniques can be 

utilized for autonomous parking. The report begins by 
outlining the fundamental challenges of autonomous 

parking, including continuous state space, decision-

making, and continuous action space. It then presents an 

overview of Deep RL, highlighting its ability to learn 
complex behaviors through interaction with the 

environment and reward feedback. Various Deep RL 

architectures, including Proximal Policy Optimization 

(PPO), Deep Deterministic Policy Gradient (DDPG), and 
Soft Actor-Critic (SAC), are discussed in the context of 

autonomous parking. 
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I. INTRODUCTION AND MOTIVATION 

A. Background 

 

Parking tasks pose a significant challenge for autonomous 
vehicles, requiring precise navigation to designated spots. 
Reinforcement learning (RL) provides a promising avenue 
for training ego-vehicles to master parking maneuvers 
autonomously. In RL-based approaches, ego-vehicles learn 
parking policies through interaction with the environment, 
leveraging algorithms like Deep Deterministic Policy  
Gradient (DDPG) or Proximal Policy Optimization (PPO) 
and Soft Actor Critic (SAC) to navigate to specified spots 
with the correct orientation. RL enables vehicles to adapt to 
diverse parking scenarios and environmental conditions, 
offering flexibility in reward design and exploration 
strategies. Ultimately, RL empowers autonomous vehicles to 
achieve efficient and safe parking in urban environments, 
contributing to the advancement of autonomous driving 
technology. 

B. Problem statement 

The objective is to design and implement a goal-conditioned 
continuous control task for an ego-vehicle, requiring it to 
autonomously navigate and park within a predefined space 
while aligning with the specified heading. 

C. Introduction to DDPG 

 Deep Deterministic Policy Gradient (DDPG) combines 
elements of both deep learning and policy gradients. It is 
designed specifically for environments with continuous 

action spaces, making it suitable for a wide range of tasks 
including robotics, control systems, and games. 

Architecture: The architecture of DDPG consists of two main 
components: an actor network and a critic network. The actor 
network takes the current state as input and outputs a 
continuous action, representing the agent's policy. The critic  
network, on the other hand, takes both the state and the action 
as input and predicts the expected return, which is used to 
evaluate the action taken by the actor. 

 Key Features: One of the key features of DDPG is its use of 
target networks. These are copies of the actor and critic  
networks periodically updated with the main networks' 
parameters. This helps stabilize training by providing more 
consistent target values for the critic and reducing the 
likelihood of overestimation. 

Exploration: Exploration in DDPG is achieved through 
adding noise to the actions selected by the actor network. 
This noise encourages the agent to explore different actions, 
allowing it to discover potentially better policies. Commonly 
used noise sources include Ornstein-Uhlenbeck noise or 
simple random noise sampled from a distribution. 

 

D. Introduction to PPO 

 
Proximal Policy Optimization (PPO) is a versatile algorithm 

tailored to seamlessly navigate continuous action spaces, 

rendering it indispensable across a spectrum of domains 

including robotics, control systems, and gaming scenarios. 
PPO differs from SAC and DDPG as it is an on-policy 

algorithm, while the other two are off-policy algorithms. 

  

Architecture: PPO's architecture revolves around a pivotal 

actor-critic framework, comprising an actor network and a 
critic network. The actor network interprets the current state 

to produce actions, effectively shaping the agent's policy. 

Simultaneously, the critic network evaluates these actions in 

the context of the state, offering insights into the expected 
return and guiding the actor's decision-making process. 

  

Key Features: PPO has the distinctive advantage in balancing 

exploration and exploitation through clipped objectives. This 
approach ensures stable and efficient training by constraining 

policy updates within a proximity threshold, preventing 

drastic policy changes that could hinder learning progress. 

Moreover, PPO integrates an adaptive learning rate 
mechanism, dynamically adjusting learning rates to suit the 



 

   

 

 

   

 

training dynamics, thereby enhancing convergence speed and 
robustness. 

  

Exploration: PPO apart from the clipping feature doesn’t 

have a direct way to promote exploration. The usual method 
of promoting exploration involves perturbing the actor's 

policy through additive noise or stochastic policies, 

encouraging the agent to explore alternative strategies and 

robustly adapt to various environmental dynamics. These 
exploration techniques enable PPO to effectively navigate 

complex and continuous action spaces, facilitating efficient 

learning and adaptation. 

 
E. Introduction to SAC 

 

The Soft Actor-Critic (SAC) algorithm stands out as a 

versatile approach tailored for continuous action spaces, ideal 

for this domain involving continuous action space of steering 

& acceleration. SAC uses a dual-critic architecture that 

allows to control variance in the updates to the policy. 

  

Architecture: SAC is comprised of two pivotal components: 

an actor network and two distinct critic networks. The actor 

network interprets the current state to produce continuous 

actions, effectively shaping the agent's policy. Meanwhile, 

the critic networks evaluate the state-action pairs, considering 

the expected return, guiding the actor towards optimal 

decision-making.  

  

Key Features: SAC also uses target networks to enhance 

stability during updates like DDPG. These target networks 

are synchronized with the primary ones using the soft update 

technique, contributing to training stability by furnishing 

consistent target values for the critics. It helps mitigate 

overestimation concerns, ensuring smoother convergence 

and more reliable performance. 

  

Exploration: SAC's exploration strategy is mainly based on 

leveraging entropy maximization. Entropy maximization 

fosters exploration while optimizing policy entropy, 

bolstering adaptability and robustness. The Entropy term is 

part of the Loss function of SAC that promotes exploration. 

Along with Entropy maximization, there are flavors of SAC 

that include additive noise in action selection. 

 

F. Feature Association 

 

Feature association using Semi-Gradient SARSA is a 

reinforcement learning technique aimed at learning value 

functions in large state spaces with limited computational 

resources. It is particularly useful when dealing with high-

dimensional input spaces by using feature representations 

instead of the raw state space. Feature association refers to 

the association of features of the state space with their 

corresponding values. In Semi-Gradient SARSA, this is 

achieved through a linear function approximation, where 

each feature is associated with a weight that represents its 

importance in predicting the value of a state-action pair. 

  

Features: The architecture of Semi-Gradient SARSA 
involves defining a set of features that capture relevant 

information about the state space. These features can be 

handcrafted based on domain knowledge or learned 

automatically from the data using techniques such as neural 
networks or kernel methods. Once the feature representation 

is established, Semi-Gradient SARSA uses a linear function 

approximation to estimate the value function. This 

approximation takes the form of a weighted sum of the 
features, where the weights are updated iteratively through 

the learning process. 

  

Exploration: Typically achieved through epsilon-greedy 
action selection, where with probability epsilon, a random 

action is chosen to encourage exploration, and with 

probability 1 - epsilon, the action with the highest estimated 

value is selected. 

 

II. SIMULATION ENVIRONMENT 

The simulation environment used for this task is the Parking 
Environment that is a  part of OpenAI Gymnasium. The task 

at hand is to attain a desired position and orientation of the 
vehicle in the parking lot. 

 

The observation space is of type: "KinematicsGoal". In this 
case, it suggests that the observations represent kinematic 
information related to achieving a specific goal (the parking 
lot goal position). 

The state features are: ['x', 'y', 'vx', 'vy', 'cos_h', 'sin_h'] 

These are the features or variables included in each 
observation. Each feature provides specific information about 
the state of the environment. Here's a breakdown: 

'x': The x-coordinate position. 

'y': The y-coordinate position. 

'vx': The velocity along the x-axis. 

'vy': The velocity along the y-axis. 

'cos_h': The cosine of the heading direction. 

'sin_h': The sine of the heading direction. 

In reward calculation, a weighted Lp norm measures the 
distance between achieved and desired goal. The achieved 
and desired goals are of the state vector format. The rewards 
are weighted according to a tunable “reward_weights” 
parameter.  

 

The simulation environment has the following additional 
features: 



 

   

 

 

   

 

• Adding walls between the lots. 

• Adding parked vehicles. 

 

III.  PROPOSED SOLUTION 

 

 A. Implementation of DDPG 

ARCHITECTURE:  

Actor Model: The actor neural network generates actions 

based on observed states. It is made up of three completely 
connected layers: an input layer with the size of the state 

space, two hidden levels with 512 and 256 units each, and an 

output layer with the size of the action space. The hidden 

layers use ReLU activation functions to introduce non-

linearity, while the output layer is activated by a hyperbolic 
tangent (tanh) function scaled by the maximal action value. 

 

Critic Model: The critic neural network measures the quality 

of state-action pairs by estimating Q-values. It takes both the 
state and the action as input, concatenates them, and feeds 

them through three fully connected layers: the input layer, 

which is the size of the concatenated state and action spaces, 

followed by two hidden layers of 512 and 256 units, and the 
output layer, which is a single unit representing the Q-value. 

The hidden layers use ReLU activations. 

 

Target Networks: Two sets of target networks, one for the 

actor and one for the critic, are implemented to stabilize 
training. These target networks are copies of the main 

networks and are periodically updated with soft updates to 

their parameters. 

FEATURES: 

Replay Buffer: The replay buffer holds the experiences 

observed by the agent when interacting with the environment. 

It is constructed as a deque with a defined capacity, allowing 

for efficient random sampling of events during training. This 
allows the agent to break down correlations between 

consecutive encounters, facilitating off-policy learning. 

 

Ornstein-Uhlenbeck Noise: Ornstein-Uhlenbeck noise is 
added to the agent's actions to facilitate exploration. This 

noise mechanism generates temporal correlations between 

consecutive actions, allowing for smoother exploration of the 

action space. It is parameterized by scale, mean (mu), theta, 

and sigma, which allows for greater control over the 
exploration process. 

B. Implementation of PPO 

ARCHITECTURE:  

Actor Model: The actor neural network generates actions 
based on observed states. It is made up of three completely 

connected layers: an input layer with the size of the state 

space, two hidden levels with 512 and 256 units each, and an 

output layer with the size of the action space. The hidden 
layers use hyperbolic activation functions to introduce non-

linearity, also the output layer is activated by a hyperbolic 

tangent (tanh) function scaled by the maximal action value. 

 

Critic Model: The critic neural network measures the quality 

of state-action pairs by estimating Q-values. It takes both the 

state and the action as input, concatenates them, and feeds 

them through three fully connected layers: the input layer, 

which is the size of the concatenated state and action spaces, 

followed by two hidden layers of 512 and 256 units, and the 

output layer, which is a single unit representing the Q-value. 

The hidden layers use hyperbolic tangent (tanh) activations. 

 

FEATURES: 

Replay Buffer: The replay buffer holds the experiences 
observed by the agent when interacting with the environment. 

It is constructed as a deque with a defined capacity, allowing 

for efficient random sampling of events during training. This 

allows the agent to break down correlations between 

consecutive encounters, facilitating off-policy learning. 
 

Clipping Objective: The updates according to the Loss 

Objective function are clipped using the parameter Epsilon to 

avoid large updates that are unsta ble and sub-optimal. The 
Advantage value is calculated according to the Monte-Carlo 

return of the timestep and is multiplied by the ratio of log-

odds of the probability of the action before and after update. 

The update is then clipped with epsilon which eliminates 
high-variance updates. 

C. Implementation of SAC 

ARCHITECTURE:  

Actor Model: The actor neural network generates actions 
based on observed states. It is made up of three completely 

connected layers: an input layer with the size of the state 

space, two hidden levels with 256 units each, and an output 

layer with the size of the action space. The hidden layers do 

not use activation, while the output layer is activated by a 
hyperbolic tangent (tanh) function scaled by the maximal 

action value. 

 

Critic Model: The critic neural network measures the quality 
of state-action pairs by estimating Q-values. SAC uses a bi-

critic architecture to increase stability in the updates. The 

update is calculated according to the Critic network which 

has the lowest Loss Objective Value. The Critic models take 
both the state and the action as input, concatenates them, and 

feeds them through three fully connected layers: the input 

layer, which is the size of the concatenated state and action 

spaces, followed by two hidden layers 256 units each, and the 
output layer, which is a single unit representing the Q-value. 

The hidden layers use ReLU activations. 

 

Target Networks: Three sets of target networks, one for the 

actor and two for the two critics, are implemented to stabilize 
training. These target networks are copies of the main 

networks and are periodically updated with soft updates to 

their parameters according to the hyperparameter ‘tau’. 

FEATURES: 

Replay Buffer: The replay buffer holds the experiences 

observed by the agent when interacting with the environment. 

It is constructed as a deque with a defined capacity, allowing 

for efficient random sampling of events during training. This 



 

   

 

 

   

 

allows the agent to break down correlations between 
consecutive encounters, facilitating off-policy learning. 

 

Entropy Maximization: It serves as a clever strategy to inject 

randomness into decision-making. By maximizing entropy, 
SAC encourages exploration by making its decisions less 

predictable, leading to a more diverse range of actions tried 

out. SAC's temperature parameter governs the degree of 

randomness injected into its policy, allowing for fine-tuning 
of exploration versus exploitation. The parameter alpha 

controls the temperature. 

 

D. Implementation of Feature Association 

ARCHITECTURE 

Q-Value Calculation (get_q_value): This function calculates 

the Q-value for a given state-action pair using linear function 

approximation. It takes the feature representation of the state, 

weight vector corresponding to the action, and state-action 
pair as inputs. The Q-value is computed as the dot product of 

the weight vector and the feature representation. 

 

Action Selection (car_e_greedy): The car_e_greedy function 
implements an epsilon-greedy policy for action selection. It 

selects a random action with probability epsilon and the 

action with the highest estimated Q-value otherwise. This 

strategy balances exploration and exploitation during the 
learning process.  

  

State Discretization (discretize_state): This function 

discretizes the continuous state space into a finite set of states. 
It maps each dimension of the state to its corresponding bin 

index, ensuring that the state falls within the valid range of 

bins.  

  

Feature Extraction (feature_x): The feature_x function 
extracts features from the discretized state representation. It 

generates a one-hot encoded feature vector based on the index 

of the discretized state, representing the presence of a state in 

the state space.  
 

Action Step (stepper): The stepper function updates the 

agent's current speed based on the selected action. It 

increments or decrements the agent's velocity along the x and 
y axes according to the chosen action, ensuring that the speed 

remains within the valid range [-1, 1]. 
 

IV. RESULTS 

The Results of the discussed algorithms are compared in 

terms of their losses, returns and episode lengths during their 

training. All the algorithms are trained for 5000 episodes with 

a timeout of 200 timesteps. The episode ends if the goal is 

reached or due to timeout.  Section VII has the video links 

which show the compilation of the training frames every 500 

episodes (i.e. 10 episodes in total). The video provides a more 

intuitive way to analyze the agent’s progress throughout the 

training. 

 

A. DDPG 

 

DDPG shows the best performance amongst all the other 

algorithms as it makes drastic progress around the 1500-

episode mark and learns the optimal policy around the 2400-
episode mark. The slight variance in the plots after learning 

optimal policy, are due to the inclusion of the OU Noise for 

exploration. 

 

 

 

B. PPO 

 

The performance of PPO is mediocre compared to DDPG as 
it has high fluctuations in its Loss function values making it 

highly unstable. It is believed that this is due to a sub-optimal 

clipping hyperparameter selection (Epsilon) that leads to the 

high fluctuations. The PPO algorithm is rather conservative 
in its final policy which is why it accumulates a higher 

negative reward and runs for a longer episode length. It can 

be concluded that the final policy is near-optimal and training 

it for more episodes may lead to better results. 



 

   

 

 

   

 

 

 

 

C. SAC 

 

SAC shows promising performance with better results than 

PPO but still not as good as DDPG. Like DDPG, the agent 

learns the optimal policy around the 2000-episode mark. 
Contrary to DDPG, it shows less variance after learning the 

optimal policy. The SAC and DDPG agent show the best 

performance compared to the other two a gents and are 

differentiated by a large margin. 

 
 

D. Feature Association 

 

Feature Association fails to learn a policy that leads it towards 

the goal. In this case, walls were added to give it initiative 
through rewards to stay in the parking lot. The final policy it 

learnt after 5000-epsiodes was to keep circling around the 

plot to avoid accruing the high collision penalty. The reason 

for the poor learning curve was the lack of orientation and 
velocity information that was encoded while discretizing the 

features. This led to it lea rning to only stay within the 

perimeter of the lot. 

 



 

   

 

 

   

 

 
 

V. CHALLENGES FACED 

  Attempting feature association by discretizing continuous 

state and action space posed significant challenges, primarily 

due to the vast number of resulting states. Discretization led 

to a state space explosion, exacerbating the curse of 

dimensionality and resulting in a loss of precision. The agent 

struggled with sparse rewards and limited generalization, 

hindering its ability to learn robust policies. While 

discretization may be suitable for low-dimensional 

environments, it proved impractical for high-dimensional and 

complex domains. Alternative methods, such as function 

approximation using neural networks or kernel methods, are 

needed to effectively handle continuous state and action 

spaces in reinforcement learning. 

  

VI.  CONCLUSION AND FUTURE WORK 

The implemented algorithms show a varying level of 

performance with DDPG performing qualitatively the best, 

while the Feature Association lacks the diversity in features 

to navigate through diverse orientations. The Deep RL 
approaches show good performance for this domain 

involving continuous observation and action space. 

 
The future work in the Parking environment domain should 

include the inclusion of additional configurations like parking 

walls and parked vehicles to add an additional layer of 

complexity to the problem solved in the scope of this current 
project. Naively applying the current approaches doesn’t 

provide desirable results. Considerable work is needed to 

encode additional information about possible collisions in the 

model's observation space, possibly through parking sensors. 
 

The work in this project forms the basis for extending the 

work in the Autonomous vehicle research domain. Some 

interesting problems for the team members include: 

• Learning Racing Maneuvers like Blocking, 

Nudging and Overtaking for Autonomous Racing. 

• Exploration Algorithms for a Reconnaissance 

Robot. 

• Behavior Planning for Lane Switching and Obstacle 

Avoidance. 

The above-mentioned problems are not exhaustive but have 
similar interesting features of continuous observation and 

action space. 

 

 
 

VII. LINKS 

Codes: 

 DDPG 

PPO 
SAC 

Feature Association 

Videos: 

DDPG 
PPO 

SAC 

Feature Association 
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