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Abstract - We present a real-time gesture recognition and 
robotic control system using ROS2 and Mediapipe. Our 
platform recognizes human arm and hand gestures from 
standard webcam input and translates them into 
commands for a robotic arm and gripper. The system 
includes multiple modes: base movement, arm positioning, 
and gripper control, each using different hand pose 
landmarks for intuitive, markerless control. Additionally, 
we incorporate a “two open palms” gesture for stopping 
camera processing and returning to an idle state awaiting 
new instructions. Our approach is designed for ease of 
integration into existing ROS-based robotics platforms. 
We evaluate the system’s performance across various 
lighting conditions and user differences, demonstrating 
reliable detection with minimal latency on common 
hardware. The results show that real-time gesture control 
can be achieved with off-the-shelf components, opening the 
door for more natural and interactive human–robot 
collaboration scenarios. 
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I.​ INTRODUCTION 
Gesture-driven robotic control has emerged as a 

compelling alternative to conventional hardware 
devices, largely due to natural user experience and 
reduced physical constraints. Traditional 
approaches often rely on specialized sensors, such 
as wearable gloves or infrared markers, which may 
impede user comfort or increase complexity. In 
contrast, modern computer vision pipelines are now 
capable of extracting detailed key points from 
regular webcam images in real time, allowing for 
markerless, highly flexible interfaces. This 
capability has spurred widespread interest in 
human–robot interaction (HRI), where gestures can 
communicate a wide array of intentions without 
requiring physical contact or specialized 
infrastructure. 

 

Our system seeks to exploit these advancements 
by integrating Mediapipe - a widely adopted library 
for real-time landmark detection - with ROS2, a 
messaging-based framework for robotic software. 
The synergy between these two technologies aims 
to isolate the user’s control intent from the robot’s 
actual motion planning, leading to an architecture 
that is both modular and extensible. Specifically, we 
split the design into two ROS2 nodes: a “Menu 
Node” focused on user-driven mode selection and a 
“Controller Node” dedicated to interpreting 
gestures. This dual-node setup ensures that user 
interface logic (such as button hovering) remains 
distinct from the gesture detection and kinematics 
mapping needed for the robot’s arm, gripper, or 
base. 

 
The system further addresses workflow 

continuity by providing a “two open palms” gesture 
that gracefully halts the camera-based controls, 
reverting to the menu so the operator can select new 
joint functionalities. Our preliminary results 
indicate that even non-expert users find this 
approach simple and intuitive, with minimal 
training or calibration required. By presenting the 
following details on methodology, experiments, and 
outcomes, we hope to illustrate how this approach 
contributes to robust yet user-friendly HRI. 

II.​ RELATED WORK 
A growing body of research has leveraged 

Mediapipe for gesture and pose recognition, often 
with impressive real-time throughput and detection 
accuracy. For instance, N. H. Phat et al. [1] enhance 
a MediaPipe Holistic model with recurrent 
networks to improve dynamic gesture 
segmentation, demonstrating a reduced error rate in 
challenging settings. Similarly, Yaseen et al. [2] 



integrate MediaPipe’s keypoint extraction as the 
front-end for a deep architecture, emphasizing how 
pretrained CNN models (e.g., Inception-v3) can be 
cascaded with temporal classifiers (e.g., LSTM) to 
capture both spatial and motion cues in human 
gestures. These techniques confirm that robust hand 
tracking and gesture labeling can be achieved even 
with modest computational resources. 

 
Beyond the domain of gesture segmentation, 

researchers have extended these methods to 
real-world human–robot interaction (HRI). Mazhar 
et al. [3] incorporate full-body pose estimation and 
gesture recognition to command robots in real-time, 
highlighting the crucial role of skeleton tracking in 
safe, close-proximity operations. Xie et al. [4] 
address a similar problem in the context of 
quadruped teleoperation, revealing that 
well-structured gestures enable fluid transitions 
among walking, manipulation, and stop behaviors - 
an idea akin to our multi-mode control for base, 
arm, and gripper. Meanwhile, purely vision-based 
manipulator control has been studied from both 
machine-learning and classical robotics standpoints. 
Sekkat et al. [5] explore a reinforcement learning 
algorithm that bypasses explicit inverse kinematics 
by mapping camera inputs to motor commands, 
whereas Lin et al. [6] focus on calibrated object 
detection for precise part placement. Both 
underscore that visual pipelines can handle 
increasingly complex tasks without resorting to 
specialized sensors. Our approach synthesizes these 
insights, employing MediaPipe’s direct landmark 
extraction within a high-level ROS2 architecture 
geared toward intuitive gesture control of robotic 
arms and grippers. 

III.​METHODS 
3.1 System Architecture 
 

The overall architecture of our approach is 
described in Figure 1. A webcam captures the 
user’s gestures, feeding images to both the “Menu 
Node” and “Controller Node.” The Menu Node 
offers a set of on-screen buttons - each 
corresponding to a subsystem of the robot (e.g., 
base movement or arm extension). By hovering a 
fingertip over a button for a set duration, the user 

selects or deselects that function. After the user 
confirms by hitting “continue,” the chosen 
subsystem is published to /selected_joint. 
 

 
Fig. 1  System Architecture Diagram 

 
In parallel, the Controller Node listens on 
/selected_joint to determine which gestures to 
interpret. For instance, if “base” is active, the 
system translates fingertip offsets into linear and 
angular velocity commands, whereas if “arm 
stretch/retract” is chosen, it computes an elbow 
angle from the user’s posture and publishes a 
normalized joint command. A unique feature is the 
two open palms gesture: if detected, the Controller 
Node issues a True message on /joint_status, 
signaling the Menu Node to resume, effectively 
“pausing” direct gesture control and allowing the 
user to pick another mode. 
 
3.2 Hover-Based Menu Interface 
 
An example of the hover-based menu is shown in 
Figure 2. This interface uses color-coded rectangles 
to represent each button, changing appearance if the 
fingertip remains within that region for a specified 
hover time (e.g., two seconds). This design is less 
error-prone than immediate clicks because users can 
correct minor deviations before triggering a 
selection. Once “continue” is hovered, the final 
choice is broadcast to the relevant topic, thus neatly 
isolating UI tasks from robot-specific logic. 
 



 
Figure 2.Illustration of the on-screen menu with labeled buttons and fingertip 

overlay for selection. 
 
3.3 Gesture Detection for Arm and Hand 
 
When the user selects a manipulator-related mode 
(e.g., up/down, stretch/retract, or gripper), the 
system leverages Mediapipe’s real-time body and 
hand landmark detection. To keep the presentation 
accessible, we describe only key functional steps: 
 

1.​ Arm Up/Down: Compares the vertical 
position of the wrist to the shoulder, 
mapping that difference into a 0.0-1.0 scale 
with incremental steps of 0.1. 

2.​ Arm Stretch/Retract: Calculates an elbow 
angle from three body landmarks 
(shoulder–elbow–wrist), again quantized to 
a discrete set of possible extension levels. 

3.​ Gripper: Monitors the thumb–index 
distance. If it is below a threshold, the 
gripper is commanded to close (e.g., 0.0), 
and otherwise remains open (e.g., 0.9). 
 

A “two open palms” posture finalizes our synergy. 
If the system detects two separate hands, each with 
all fingertips sufficiently far from the palm center, it 
concludes that the user wishes to exit the current 
gesture mode. The node halts camera-based 
processing and sends a Boolean “quit” signal to the 
menu node, which reappears. This mechanism 
ensures that mode switching remains at the user’s 

discretion without requiring additional physical 
buttons or complicated gestures. 

 
 
Figure 3.Overlay showing detected shoulder, elbow, wrist, and fingertip 
landmarks used for arm control and gripper distance. 
 

IV.​EXPERIMENTS AND RESULTS 
 
For evaluation, we deployed our system on a 

Stretch 3 robot model running in the Ignition 
Gazebo simulator under ROS2 Humble. Figure 4 
shows the simulated environment with the 
Stretch 3’s manipulator, base, and gripper visible. 
We also used a typical mid-range PC, simulating a 
standard USB webcam feed at ~30 FPS for both the 
Menu and Controller Nodes. 

 
To assess the performance of our gesture-control 
framework, we conducted a series of controlled 
trials involving n=5 participants. Each participant 
performed five gesture types - (1) Base Movement, 
(2) Arm Up/Down, (3) Arm Stretch/Retract, (4) 
Gripper (Open/Close), and (5) Two Palm Detection 
for idle/quit signaling - under moderate indoor 
lighting at a capture rate of approximately 30 FPS. 
We recorded a total of 100 gesture instances per 
category, evaluating accuracy, recall, average 
latency, and false positive rates (where applicable). 
The following sections detail our findings. 

 



 
Figure 4.Snapshot of the Stretch 3 robot in the Ignition Gazebo simulation 

environment, controlled via our gesture-based system. 
 
4.1 Quantitative Analysis 
 
We define accuracy as the proportion of correct 
recognitions (i.e., the system’s output matches the 
user’s intended gesture), while recall captures the 
fraction of true positives successfully detected 
among all intended occurrences. Latency 
corresponds to the mean time from the user’s 
gesture initiation to the visible command effect in 
the robot simulator. False positives occur when the 
system erroneously registers a gesture (e.g., “two 
palms” detection) despite the user not intending to 
trigger that event. 
 
Table 1 summarizes the results across the five 
gesture types. 
 
4.1.1 Base Movement 
 
Base control achieved 95% accuracy, indicating that 
simple fingertip offset detection relative to the 
image center is robust under typical conditions. The 
0.05 false positive rate largely stemmed from minor 
hand jitter or partial frames where the fingertip was 
momentarily out of bounds. Overall, participants 
found the base mode intuitive, with an average 
latency of 0.20 s, sufficient for smooth 
teleoperation. 

Table 1. Gesture Accuracy, Recall, Latency and False Positives rate results 
 
4.1.2 Arm Up/Down and Arm Stretch/Retract 
 
Arm-related gestures showed slightly lower 
accuracy and recall (down to 0.88 - 0.90) due to 
potential rapid user movements. Nevertheless, the 
quantization to 0.1 increments of joint positions 
helped stabilize the control. The latency values of 
0.220.22 and 0.250.25 seconds remain acceptable 
for non-critical tasks, such as placing objects. A 
modest increase in false positives (up to 
0.070.07–0.090.09) can be attributed to partial 
frames where the user’s arm was mid-gesture, 
momentarily resembling another posture. 
 
4.1.3 Gripper (Open/Close) 
 
The gripper gesture yielded the highest overall 
metrics, with 96% accuracy and 94% recall, 
reflecting the robustness of the thumb–index 
distance threshold. Users noted that they could 
reliably maintain or break a certain finger spacing 
to initiate open/close commands. The system’s false 
positive rate of 0.04 was the lowest among all 
gestures, suggesting that simple binary thresholds 
can be especially reliable when focusing on 
fingertip separation. 
 
4.1.4 Two Palms (Quit Signal) 
 
While the system effectively recognized “two 
palms” in most cases - shown by a high recall of 

Gesture Type Accuracy Recall Avg. 
Latency 

(s) 

False 
Positives 

Base 
Movement 

0.95 0.93 0.20 0.05 

Arm Up/Down 0.90 0.88 0.22 0.07 

Arm 
Stretch/Retract 

0.88 0.85 0.25 0.09 

Gripper 
(Open/Close) 

0.96 0.94 0.19 0.04 

Two Palms 
(Quit Signal) 

0.85 0.90 0.29 0.15 



0.90 - its accuracy was slightly lower at 0.85, with 
false positives climbing to 0.15. In numerous trials, 
users spread a single hand widely or unintentionally 
displayed a partial second hand in the field of view, 
leading to misclassification. The average latency of 
0.290.29 s results partly from the additional 
verification step (ensuring both hands remain open 
for a stable duration), which adds some overhead. 
Despite these drawbacks, participants found the 
feature useful for gracefully returning to the 
menu-based interface. 
 
4.2 User Feedback and Observations 
 
Qualitative feedback indicated that the majority of 
participants found the system easy to learn, 
particularly appreciating the hover-based menu’s 
forgiving 2 s selection window. Several users 
suggested that “two palm detection” be made more 
sensitive to reduce necessary posture time, though 
we note that raising sensitivity may further inflate 
false positives. Overall, the synergy between the 
menu selection and real-time gesture processing 
was well-received, aligning with our goal of a 
modular and user-friendly interface. 

V.​ DISCUSSIONS AND SUMMARY 
Our experiments demonstrate that a menu-guided 

and gesture-driven approach can effectively control 
a multi-joint robot, shown here with a simulated 
Stretch 3 manipulator. The separation of user 
interface logic (menu node) from the posture-based 
command generation (controller node) ensures that 
new robot capabilities or modes can be appended 
without overhauling the entire system. Furthermore, 
the synergy of real-time pose detection with a 
simple quantization scheme yields a consistently 
interpretable link between user gestures and robot 
states, preventing abrupt or erratic movements. 

 
In practice, we envision broadening the repertoire 

of recognized gestures - potentially adopting 
dynamic gestures or multi-finger configurations - to 
expand the operational envelope. Likewise, future 
work could explore synergy with speech or other 
sensors, creating a multimodal interface for even 
smoother HRI experiences. Nevertheless, the 
present setup is already sufficiently robust for 

common teleoperation tasks, emphasizing that 
off-the-shelf vision solutions, combined with 
ROS2’s flexible architecture, can deliver a practical 
platform for intuitive human–robot collaboration. 
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