Gesture-Based Teleoperation of Stretch Robot
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Abstract - We present a real-time gesture recognition and
robotic control system using ROS2 and Mediapipe. Our
platform recognizes human arm and hand gestures from
standard webcam input and translates them into
commands for a robotic arm and gripper. The system
includes multiple modes: base movement, arm positioning,
and gripper control, each using different hand pose
landmarks for intuitive, markerless control. Additionally,
we incorporate a “two open palms” gesture for stopping
camera processing and returning to an idle state awaiting
new instructions. Our approach is designed for ease of
integration into existing ROS-based robotics platforms.
We evaluate the system’s performance across various
lighting conditions and user differences, demonstrating
reliable detection with minimal latency on common
hardware. The results show that real-time gesture control
can be achieved with off-the-shelf components, opening the
door for more natural and interactive human-robot
collaboration scenarios.
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I. INTRODUCTION

Gesture-driven robotic control has emerged as a
compelling alternative to conventional hardware
devices, largely due to natural user experience and
reduced  physical constraints. Traditional
approaches often rely on specialized sensors, such
as wearable gloves or infrared markers, which may
impede user comfort or increase complexity. In
contrast, modern computer vision pipelines are now
capable of extracting detailed key points from
regular webcam images in real time, allowing for
markerless, highly flexible interfaces. This
capability has spurred widespread interest in
human—robot interaction (HRI), where gestures can
communicate a wide array of intentions without
requiring  physical contact or specialized
infrastructure.

Our system seeks to exploit these advancements
by integrating Mediapipe - a widely adopted library
for real-time landmark detection - with ROS2, a
messaging-based framework for robotic software.
The synergy between these two technologies aims
to isolate the user’s control intent from the robot’s
actual motion planning, leading to an architecture
that is both modular and extensible. Specifically, we
split the design into two ROS2 nodes: a “Menu
Node” focused on user-driven mode selection and a
“Controller Node” dedicated to interpreting
gestures. This dual-node setup ensures that user
interface logic (such as button hovering) remains
distinct from the gesture detection and kinematics
mapping needed for the robot’s arm, gripper, or
base.

The system further addresses workflow
continuity by providing a “two open palms” gesture
that gracefully halts the camera-based controls,
reverting to the menu so the operator can select new
joint functionalities. Our preliminary results
indicate that even non-expert users find this
approach simple and intuitive, with minimal
training or calibration required. By presenting the
following details on methodology, experiments, and
outcomes, we hope to illustrate how this approach
contributes to robust yet user-friendly HRI.

II. RELATED WORK

A growing body of research has leveraged
Mediapipe for gesture and pose recognition, often
with impressive real-time throughput and detection
accuracy. For instance, N. H. Phat et al. [1] enhance
a MediaPipe Holistic model with recurrent
networks to  improve  dynamic  gesture
segmentation, demonstrating a reduced error rate in
challenging settings. Similarly, Yaseen et al. [2]



integrate MediaPipe’s keypoint extraction as the
front-end for a deep architecture, emphasizing how
pretrained CNN models (e.g., Inception-v3) can be
cascaded with temporal classifiers (e.g., LSTM) to
capture both spatial and motion cues in human
gestures. These techniques confirm that robust hand
tracking and gesture labeling can be achieved even
with modest computational resources.

Beyond the domain of gesture segmentation,
researchers have extended these methods to
real-world human-robot interaction (HRI). Mazhar
et al. [3] incorporate full-body pose estimation and
gesture recognition to command robots in real-time,
highlighting the crucial role of skeleton tracking in
safe, close-proximity operations. Xie et al. [4]
address a similar problem in the context of
quadruped teleoperation, revealing that
well-structured gestures enable fluid transitions
among walking, manipulation, and stop behaviors -
an idea akin to our multi-mode control for base,
arm, and gripper. Meanwhile, purely vision-based
manipulator control has been studied from both
machine-learning and classical robotics standpoints.
Sekkat et al. [5] explore a reinforcement learning
algorithm that bypasses explicit inverse kinematics
by mapping camera inputs to motor commands,
whereas Lin et al. [6] focus on calibrated object
detection for precise part placement. Both
underscore that visual pipelines can handle
increasingly complex tasks without resorting to
specialized sensors. Our approach synthesizes these
insights, employing MediaPipe’s direct landmark
extraction within a high-level ROS2 architecture
geared toward intuitive gesture control of robotic
arms and grippers.

IIT. METHODS
3.1 System Architecture

The overall architecture of our approach is
described in Figure 1. A webcam captures the
user’s gestures, feeding images to both the “Menu
Node” and “Controller Node.” The Menu Node
offers a set of on-screen buttons - each
corresponding to a subsystem of the robot (e.g.,
base movement or arm extension). By hovering a
fingertip over a button for a set duration, the user

selects or deselects that function. After the user
confirms by hitting “continue,” the chosen
subsystem is published to /selected joint.
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Fig. 1 System Architecture Diagram

In parallel, the Controller Node listens on
/selected joint to determine which gestures to
interpret. For instance, if “base” is active, the
system translates fingertip offsets into linear and
angular velocity commands, whereas if ‘“arm
stretch/retract” is chosen, it computes an elbow
angle from the user’s posture and publishes a
normalized joint command. A unique feature is the
two open palms gesture: if detected, the Controller
Node issues a True message on /joint status,
signaling the Menu Node to resume, effectively
“pausing” direct gesture control and allowing the
user to pick another mode.

3.2 Hover-Based Menu Interface

An example of the hover-based menu is shown in
Figure 2. This interface uses color-coded rectangles
to represent each button, changing appearance if the
fingertip remains within that region for a specified
hover time (e.g., two seconds). This design is less
error-prone than immediate clicks because users can
correct minor deviations before triggering a
selection. Once “continue” is hovered, the final
choice is broadcast to the relevant topic, thus neatly
isolating UI tasks from robot-specific logic.



[MenuNode] Hover-based Menu = &

CROoDAEAE@E

__per

Figure 2.Illustration of the on-screen menu with labeled buttons and fingertip
overlay for selection.

3.3 Gesture Detection for Arm and Hand

When the user selects a manipulator-related mode
(e.g., up/down, stretch/retract, or gripper), the
system leverages Mediapipe’s real-time body and
hand landmark detection. To keep the presentation
accessible, we describe only key functional steps:

1. Arm Up/Down: Compares the vertical
position of the wrist to the shoulder,
mapping that difference into a 0.0-1.0 scale
with incremental steps of 0.1.

2. Arm Stretch/Retract: Calculates an elbow
angle from three body landmarks
(shoulder—elbow—wrist), again quantized to
a discrete set of possible extension levels.

3. Gripper:  Monitors the thumb-index
distance. If it is below a threshold, the
gripper is commanded to close (e.g., 0.0),
and otherwise remains open (e.g., 0.9).

A “two open palms” posture finalizes our synergy.
If the system detects two separate hands, each with
all fingertips sufficiently far from the palm center, it
concludes that the user wishes to exit the current
gesture mode. The node halts camera-based
processing and sends a Boolean “quit” signal to the
menu node, which reappears. This mechanism
ensures that mode switching remains at the user’s

discretion without requiring additional physical
buttons or complicated gestures.

Figure 3.Overlay showing detected shoulder, elbow, wrist, and fingertip
landmarks used for arm control and gripper distance.

IV. EXPERIMENTS AND RESULTS

For evaluation, we deployed our system on a
Stretch3 robot model running in the Ignition
Gazebo simulator under ROS2 Humble. Figure 4
shows the simulated environment with the
Stretch 3’°s manipulator, base, and gripper visible.
We also used a typical mid-range PC, simulating a
standard USB webcam feed at ~30 FPS for both the
Menu and Controller Nodes.

To assess the performance of our gesture-control
framework, we conducted a series of controlled
trials involving n=5 participants. Each participant
performed five gesture types - (1) Base Movement,
(2) Arm Up/Down, (3) Arm Stretch/Retract, (4)
Gripper (Open/Close), and (5) Two Palm Detection
for idle/quit signaling - under moderate indoor
lighting at a capture rate of approximately 30 FPS.
We recorded a total of 100 gesture instances per
category, evaluating accuracy, recall, average
latency, and false positive rates (where applicable).
The following sections detail our findings.
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Figure 4.Snapshot of the Stretch 3 robot in the Ignition Gazebo simulation
environment, controlled via our gesture-based system.

4.1 Quantitative Analysis

We define accuracy as the proportion of correct
recognitions (i.e., the system’s output matches the
user’s intended gesture), while recall captures the
fraction of true positives successfully detected
among all intended occurrences. Latency
corresponds to the mean time from the user’s
gesture initiation to the visible command effect in
the robot simulator. False positives occur when the
system erroneously registers a gesture (e.g., “two
palms” detection) despite the user not intending to
trigger that event.

Table 1 summarizes the results across the five
gesture types.

4.1.1 Base Movement

Base control achieved 95% accuracy, indicating that
simple fingertip offset detection relative to the
image center is robust under typical conditions. The
0.05 false positive rate largely stemmed from minor
hand jitter or partial frames where the fingertip was
momentarily out of bounds. Overall, participants
found the base mode intuitive, with an average
latency of 0.20s, sufficient for smooth
teleoperation.

Gesture Type | Accuracy | Recall Avg. False
Latency | Positives
O]

Base 0.95 0.93 0.20 0.05
Movement
Arm Up/Down 0.90 0.88 0.22 0.07
Arm 0.88 0.85 0.25 0.09
Stretch/Retract

Gripper 0.96 0.94 0.19 0.04
(Open/Close)

Two Palms 0.85 0.90 0.29 0.15
(Quit Signal)

Table 1. Gesture Accuracy, Recall, Latency and False Positives rate results

4.1.2 Arm Up/Down and Arm Stretch/Retract

Arm-related gestures showed slightly lower
accuracy and recall (down to 0.88 - 0.90) due to
potential rapid user movements. Nevertheless, the
quantization to 0.1 increments of joint positions
helped stabilize the control. The latency values of
0.220.22 and 0.250.25 seconds remain acceptable
for non-critical tasks, such as placing objects. A
modest increase in false positives (up to
0.070.07-0.090.09) can be attributed to partial
frames where the user’s arm was mid-gesture,
momentarily resembling another posture.

4.1.3 Gripper (Open/Close)

The gripper gesture yielded the highest overall
metrics, with 96% accuracy and 94% recall,
reflecting the robustness of the thumb-index
distance threshold. Users noted that they could
reliably maintain or break a certain finger spacing
to initiate open/close commands. The system’s false
positive rate of 0.04 was the lowest among all
gestures, suggesting that simple binary thresholds
can be especially reliable when focusing on
fingertip separation.

4.1.4 Two Palms (Quit Signal)

While the system effectively recognized “two
palms” in most cases - shown by a high recall of



0.90 - its accuracy was slightly lower at 0.85, with
false positives climbing to 0.15. In numerous trials,
users spread a single hand widely or unintentionally
displayed a partial second hand in the field of view,
leading to misclassification. The average latency of
0.290.29s results partly from the additional
verification step (ensuring both hands remain open
for a stable duration), which adds some overhead.
Despite these drawbacks, participants found the
feature useful for gracefully returning to the
menu-based interface.

4.2 User Feedback and Observations

Qualitative feedback indicated that the majority of
participants found the system easy to learn,
particularly appreciating the hover-based menu’s
forgiving 2s selection window. Several users
suggested that “two palm detection” be made more
sensitive to reduce necessary posture time, though
we note that raising sensitivity may further inflate
false positives. Overall, the synergy between the
menu selection and real-time gesture processing
was well-received, aligning with our goal of a
modular and user-friendly interface.

V. DISCUSSIONS AND SUMMARY

Our experiments demonstrate that a menu-guided
and gesture-driven approach can effectively control
a multi-joint robot, shown here with a simulated
Stretch3 manipulator. The separation of user
interface logic (menu node) from the posture-based
command generation (controller node) ensures that
new robot capabilities or modes can be appended
without overhauling the entire system. Furthermore,
the synergy of real-time pose detection with a
simple quantization scheme yields a consistently
interpretable link between user gestures and robot
states, preventing abrupt or erratic movements.

In practice, we envision broadening the repertoire
of recognized gestures - potentially adopting
dynamic gestures or multi-finger configurations - to
expand the operational envelope. Likewise, future
work could explore synergy with speech or other
sensors, creating a multimodal interface for even
smoother HRI experiences. Nevertheless, the
present setup is already sufficiently robust for

common teleoperation tasks, emphasizing that
off-the-shelf vision solutions, combined with
ROS2’s flexible architecture, can deliver a practical
platform for intuitive human-robot collaboration.
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