
Reconnaissance
Robot

Team:
1. Abhishek Uddaraju
2. Atharva Jamsandekar
3. Yijian Huang
4. Jiatong Wu
5. Bhanu Prasad AJ

EECE 5550: Mobile Robotics Final project
 Prof. Michael Everett

Table of Contents:

1. Overview

2. Frontier Exploration

3. Global Planning

4. Local Planning

5. April tag detection

6. Results

● Simulation Results

● Real-world Results

Overview

The Reconnaissance Bot is a Navigation stack based on frontier

exploration of an unknown environment.

The package is able to explore the environment after integration

with a SLAM algorithm that provides the map and transform

tree.

It has the additional functionality of identifying points of interest

in the environment.

Applications:

1) Unsafe disaster-struck Environment Survey

2) Reconnaissance of Military-active regions

The Package has been tested on the Turtebot3 burger platform.

Architecture

Frontier Exploration[1]

Overview:

1. Identify candidates

2. Clustering the candidate points

3. Scoring the clusters

4. Choosing a goal

[1]Erkan Uslu, Furkan Çakmak, Muhammet Balcılar, Attila Akinci, Mehmet Fatih Amasyalı, and S. Yavuz, “Implementation of frontier-based exploration
algorithm for an autonomous robot,” Sep. 2015, doi: https://doi.org/10.1109/inista.2015.7276723.

Frontier Exploration

Identifying candidates:

1. Move a kernel through the map

2. If any occupied cells are detected in the neighbourhood, reject the cell

3. The eligible candidates will have a ratio of free cells to unknown cells

Frontier Exploration

Frontier Exploration — K Means Clustering
- Unsupervised learning algorithm

- Centroid - based algorithm

- Determines the best value for K center points or centroids by an iterative process.

- Assigns each data points to its closest k-center.
- Those data points which are near to the particular k-center, create a cluster.

Frontier Exploration — K Means Clustering

Step 1: Select the number K to decide the
numbers of clusters. (K=8)

Step 2: Select random K points in the grid world.

Step 3: Assign each data point to their closest
centroid, which will form the predefined K
clusters.

Step 4: Calculate the variance and place a new
centroid of each cluster.

Step 5: Repeat ‘Step 3’, which re-assign each
data point to the new closest centroid of each
cluster.

Step 6: I any reassignment occurs, then go to
‘Step 4’, else FINISH.

Frontier Exploration

Scoring candidates:

1. Euclidean distance to the centroid

2. Mass of the Cluster

Choosing candidates:

1. Randomly choosing one candidate from the chosen cluster as the goal

Frontier Exploration

Challenges:

1. Performing boolean operations through nested for loops is expensive

2. Took more than 16 seconds to run through a 384 x 384 map!

Frontier Exploration

Solution:

1. JAX to the rescue!

a. Used the built-in convolution function that uses FFT to speed up

the process

2. Ran it in a parallel pipeline to get next frontier before the robot reaches

current goal

Global Planning: A*

Complexity：O(log h*(x))
where h* is the optimal heuristic, the
exact cost to get from x to the goal.

● A kind of path searching algorithm
● An extension of Dijkstra's algorithm
● Node to node
● Completeness, optimality, and optimal

efficiency

● Input: map(grid), start position, goal
● Output: path(list of position)

Global Planning: A*

How it works? Move cost : distance from start point

Heuristic function:Hypotenuse of triangle
C=√(a^2+b^2)

Cost sum : heuristic function + move cost

For top, cost = 1+5 =6
For top right, cost = √2 + 3 √2 = 4 √2

Global Planning: A*

Move cost : give obstacle a large cost like 100

Drawback:

Space complexity
Stores all generated nodes in memory
But for our grid it is not big map

When facing a far goal, it may calculate a path with a long time.
This may cause robot stop or crash

Avoid Obstacles

Global Planning: A*

Local Planning: MPPI

TurtleBot Limits:

● Linear velocity Limits (m/s) : [-0.26, 0.26]

● Angular Velocity Limits (rad/s): [-2.84, 2.84]

MPPI Parameters:

● Number of Rollouts = 100

● Number of Steps = 20

● Nominal Velocity = 0.8

● Nominal Angular Velocity = [0, pi]

Maximum Frequency of the Local planner: 12 Hz

We are running it at 10 Hz frequency, with freshly
updated map.

 Sigma : 0.05 m/s Sigma : 0.3 rad/s

MPPI Demo

https://docs.google.com/file/d/1h7SMv9IbU4FkvG5b9jdj2f4yRdoPqk8H/preview

SLAM and April tag detection

SLAM:

● Gmapping is used for performing Simultaneous Localization and Mapping.
● Part of Turtlebot3_slam ROS package.
● Will attempt to transform each incoming scan into the odom (odometry)

tf frame.

April tag detection:

/tag_detections: the same information as provided by the /tf topic but as a custom
message carrying the tag ID(s), size(s) and
geometry_msgs/PoseWithCovarianceStamped pose information (where plural
applies for tag bundles). This is always published

Results
Simulation Environment:

Real-world Environment:

https://docs.google.com/file/d/1Hfe4v5nhGsanN7Kqn8JsqU-Q6Bbpkhoc/preview

https://docs.google.com/file/d/1ojPq4bCYc7DhbbvHcUkPWgjhOy1zyZ7O/preview

Future Scope & Extensions:

● AprilTag Pose seeking

● Scalable to a Larger Environment

● Victim Detection Vision Pipeline to replace AprilTag Detection

● AprilTag Pose Estimation using Factor Graphs

Github: https://github.com/arjunjyothieswarb/MR_FinalProject/

https://github.com/arjunjyothieswarb/MR_FinalProject/

