Reconnaissance
Robot

EECE 5550: Mobile Robotics Final project
Prof. Michael Everett

Team:
1. Abhishek Uddaraju
2. AtharvaJamsandekar
3. Yijian Huang
4, Jiatong Wu
5. BhanuPrasad AJ

Table of Contents:

o U A W Db

Overview

Frontier Exploration
Global Planning

Local Planning

April tag detection
Results

e Simulation Results

e Real-world Results

Overview

The Reconnaissance Bot is a Navigation stack based on frontier
exploration of an unknown environment.

The package is able to explore the environment after integration
with a SLAM algorithm that provides the map and transform
tree.

It has the additional functionality of identifying points of interest
in the environment.

Applications:

1) Unsafe disaster-struck Environment Survey
2) Reconnaissance of Military-active regions

The Package has been tested on the Turtebot3 burger platform.

Architecture

SLAM Node Map Inflator

Odometry TF data
Binary cost map

New frontier goal

Global Planner Publish next pose Next Pose Local Planner
Frontier

Server

No,
Refresh path

Yes,
Frontier Get latest next pose Pose
reached? reached?

Frontier Exploration!

Overview:
1. Identify candidates
2. Clustering the candidate points
3. Scoring the clusters
4. Choosing agoal

[1]Erkan Uslu, Furkan Cakmak, Muhammet Balcilar, Attila Akinci, Mehmet Fatih Amasyali, and S. Yavuz, “Implementation of frontier-based exploration
algorithm for an autonomous robot,” Sep. 2015, doi: https://doi.org/10.1109/inista.2015.7276723.

Frontier Exploration

|ldentifying candidates:

1. Move a kernel through the map
2. If any occupied cells are detected in the neighbourhood, reject the cell

3. Theeligible candidates will have a ratio of free cells to unknown cells

\ Frontier Exploration

Free space

Unknown cells

Occupied cells

Frontier Exploration — K Means Clustering

- Unsupervised learning algorithm
- Centroid - based algorithm
- Determines the best value for K center points or centroids by an iterative process.

- Assigns each data points to its closest k-center.
- Those data points which are near to the particular k-center, create a cluster.

Before K-Means After K-Means

Frontier Exploration — K Means Clustering

Step 1: Select the number K to decide the
numbers of clusters. (K=8)

Step 2: Select random K points in the grid world.

Step 3: Assign each data point to their closest
centroid, which will form the predefined K
clusters.

Step 4: Calculate the variance and place a new
centroid of each cluster.

Step 5: Repeat ‘Step 3’, which re-assign each
dlata point to the new closest centroid of each
cluster.

Step 6: | any reassignment occurs, then go to
‘Step 4°, else FINISH.

Frontier Exploration

Scoring candidates:

1. Euclidean distance to the centroid

2. Mass of the Cluster

Choosing candidates:

1. Randomly choosing one candidate from the chosen cluster as the goal

Frontier Exploration

Challenges:

1. Performing boolean operations through nested for loops is expensive

2. Took more than 16 seconds to run through a 384 x 384 map!

Frontier Exploration

Solution:

1. JAXtotherescue!
a. Used the built-in convolution function that uses FFT to speed up
the process
2. Ranitinaparallel pipeline to get next frontier before the robot reaches

current goal

Global Planning: A*

obstacle
HEEEEREEREE start node
e AKkind of path searching algorithm HEEN HEEEE destination node
e An extension of Dijkstra's algorithm AHEEN | DA | [navigable node
e Node to node 'A... path generated by
e Completeness, optimality, and optimal traditional A-Star
efficiency L IXIXIXI LI]
L IR X
e Input: map(grid), start position, goal L I T]
e Output: path(list of position) | T IXIXIXIX]]
e |] L]
The value of grids: 1 -

1723 456 7 8 9101112

100 means obstacle
0 means clear grids T *
- 1 means unknown grids CompIeX|ty.O(Iog h (X))
where h* is the optimal heuristic, the
exact cost to get from x to the goal.

Global Planning: A*

How it works?

Move cost : distance from start point

Heuristic function:Hypotenuse of triangle
C=V(a"2+b"2)

Cost sum : heuristic function + move cost

For top, cost = 1+5 =6
For top right, cost =2+ 3 v2=4 2

Global Planning: A*

Avoid Obstacles Move cost : give obstacle a large cost like 100

Drawback:

Space complexity
Stores all generated nodes in memory
But for our grid it is not big map

When facing a far goal, it may calculate a path with a long time.
This may cause robot stop or crash

Global Planning: A*

temp_rviz.rviz* - RViz Activities ¥ rviz v Apr18 14:38 o

File panels Help

temp_rviz.rviz* - RViz
hyinteract | *$*Move Camera select Focus Camera Measure 2D PoseEstimate 7 2DNavGoal @ Publish Point Eile panels Help

yinteract | %*Move Camera Iselect Focus Camera Measure 2D PoseEstimate .~ 2DNavGoal @ Publish Point

OWEIQLiNeeoEPOQOESC

|

O Time
Pause | Synchronization: | Off - | ROSTime: 192.69 ROS Elapsed: 192.61

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click: Zoom. Shift: More options.

Perturbation Linear Velocity samples Perturbation Angular Velocity samples

Local Planning: MPPI

TurtleBot Limits:

e Linear velocity Limits (m/s) : [-0.26, 0.26]
e Angular Velocity Limits (rad/s): [-2.84, 2.84] e S0 o O Wb O 5

Value

MPPI Parameters: Sigma:0.05 m/s Sigma: 0.3 rad/s

Number of Rollouts = 100
Number of Steps = 20

Nominal Velocity = 0.8

Nominal Angular Velocity = [0, pi]

Y Position

Maximum Frequency of the Local planner: 12 Hz

We are running it at 10 Hz frequency, with freshly
updated map.

-0.5 0.0 0.5 1.0 15
X Position

MPPI Demo

N\

https://docs.google.com/file/d/1h7SMv9IbU4FkvG5b9jdj2f4yRdoPqk8H/preview

"move_base_simple/goal”
geometry_msgs/PoseStamped

move_base Imap
\

AMCL global_
sensor

Sensor topics (M censor
Transform sources

map_server

Odometry f
ocal_planner
Source ’_—p local_costmap

"cmd_ve|"vgeometry_msngW|st O provided node

[J optional provided node
base controller O plataform specific node

SLAM and April tag detection

SLAM:

e GCmapping is used for performing Simultaneous Localization and Mapping.

e Part of Turtlebot3_slam ROS package.

e Will attempt to transform each incoming scan into the odom (odometry)
tf frame.

) Itf
H H /camera/image_rect iltags2
April tag detection: omerorcamera.in Itag_detections
camera/camera_info
- /tag_detections_image

/tag_detections: the same information as provided by the /tf topic but as a custom
message carrying the tag ID(s), size(s) and
geometry_msgs/PoseWithCovarianceStamped pose information (where plural
applies for tag bundles). This is always published

Results

Simulation Environment:

Real-world Environment:

Reconnaissance
Robot Demo

Gazebo: Turtlebot House

https://docs.google.com/file/d/1Hfe4v5nhGsanN7Kqn8JsqU-Q6Bbpkhoc/preview

Reconnaissance
Robot Demo

Location: Hurtig Hall
Date: 04/17/24

https://docs.google.com/file/d/1ojPq4bCYc7DhbbvHcUkPWgjhOy1zyZ7O/preview

Future Scope & Extensions:

AprilTag Pose seeking

Scalable to a Larger Environment

Victim Detection Vision Pipeline to replace AprilTag Detection
AprilTag Pose Estimation using Factor Graphs

Github: https://github.com/arjunjyothieswarb/MR FinalProject/

https://github.com/arjunjyothieswarb/MR_FinalProject/

