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Overview

The Reconnaissance Bot is a Navigation stack based on frontier
exploration of an unknown environment.

The package is able to explore the environment after integration
with a SLAM algorithm that provides the map and transform
tree.

It has the additional functionality of identifying points of interest
in the environment.

Applications:

1) Unsafe disaster-struck Environment Survey
2) Reconnaissance of Military-active regions

The Package has been tested on the Turtebot3 burger platform.



Architecture
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Frontier Exploration!

Overview:
1. Identify candidates
2. Clustering the candidate points
3. Scoring the clusters
4. Choosing agoal

[1]Erkan Uslu, Furkan Cakmak, Muhammet Balcilar, Attila Akinci, Mehmet Fatih Amasyali, and S. Yavuz, “Implementation of frontier-based exploration
algorithm for an autonomous robot,” Sep. 2015, doi: https://doi.org/10.1109/inista.2015.7276723.



Frontier Exploration

|ldentifying candidates:

1. Move a kernel through the map
2. If any occupied cells are detected in the neighbourhood, reject the cell

3. Theeligible candidates will have a ratio of free cells to unknown cells



\ Frontier Exploration
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Frontier Exploration — K Means Clustering

- Unsupervised learning algorithm
- Centroid - based algorithm
- Determines the best value for K center points or centroids by an iterative process.

- Assigns each data points to its closest k-center.
- Those data points which are near to the particular k-center, create a cluster.

Before K-Means After K-Means




Frontier Exploration — K Means Clustering

Step 1: Select the number K to decide the
numbers of clusters. (K=8)

Step 2: Select random K points in the grid world.

Step 3: Assign each data point to their closest
centroid, which will form the predefined K
clusters.

Step 4: Calculate the variance and place a new
centroid of each cluster.

Step 5: Repeat ‘Step 3’, which re-assign each
dlata point to the new closest centroid of each
cluster.

Step 6: | any reassignment occurs, then go to
‘Step 4°, else FINISH.




Frontier Exploration

Scoring candidates:

1. Euclidean distance to the centroid

2. Mass of the Cluster

Choosing candidates:

1. Randomly choosing one candidate from the chosen cluster as the goal



Frontier Exploration

Challenges:

1. Performing boolean operations through nested for loops is expensive

2. Took more than 16 seconds to run through a 384 x 384 map!



Frontier Exploration

Solution:

1. JAXtotherescue!
a. Used the built-in convolution function that uses FFT to speed up
the process
2. Ranitinaparallel pipeline to get next frontier before the robot reaches

current goal



Global Planning: A*

obstacle
HEEEEREEREE start node
e AKkind of path searching algorithm HEEN HEEEE destination node
e An extension of Dijkstra's algorithm AHEEN | DA | [ navigable node
e Node to node ..... 'A... path generated by
e Completeness, optimality, and optimal ..... .... traditional A-Star
efficiency L IXIXIXI LI ]
L IR X
e Input: map(grid), start position, goal L I T ]
e Output: path(list of position) | T IXIXIXIX] ]
e | ] L]
The value of grids: 1 -

1723 456 7 8 9101112

100 means obstacle
0 means clear grids T *
- 1 means unknown grids CompIeX|ty.O(Iog h (X))
where h* is the optimal heuristic, the
exact cost to get from x to the goal.



Global Planning: A*

How it works?

Move cost : distance from start point

Heuristic function:Hypotenuse of triangle
C=V(a"2+b"2)

Cost sum : heuristic function + move cost

For top, cost = 1+5 =6
For top right, cost =2+ 3 v2=4 2



Global Planning: A*

Avoid Obstacles Move cost : give obstacle a large cost like 100

Drawback:

Space complexity
Stores all generated nodes in memory
But for our grid it is not big map

When facing a far goal, it may calculate a path with a long time.
This may cause robot stop or crash




Global Planning: A*
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Perturbation Linear Velocity samples Perturbation Angular Velocity samples

Local Planning: MPPI

TurtleBot Limits:

e Linear velocity Limits (m/s) : [-0.26, 0.26]
e Angular Velocity Limits (rad/s): [-2.84, 2.84] e S0 o O Wb O 5

Value

MPPI Parameters: Sigma:0.05 m/s Sigma: 0.3 rad/s

Number of Rollouts = 100
Number of Steps = 20

Nominal Velocity = 0.8

Nominal Angular Velocity = [0, pi]

Y Position

Maximum Frequency of the Local planner: 12 Hz

We are running it at 10 Hz frequency, with freshly
updated map.

-0.5 0.0 0.5 1.0 15
X Position




MPPI Demo
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https://docs.google.com/file/d/1h7SMv9IbU4FkvG5b9jdj2f4yRdoPqk8H/preview
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SLAM and April tag detection

SLAM:

e GCmapping is used for performing Simultaneous Localization and Mapping.

e Part of Turtlebot3_slam ROS package.

e Will attempt to transform each incoming scan into the odom (odometry)
tf frame.

) Itf
H H /camera/image_rect iltags2
April tag detection: omerorcamera.in Itag_detections
camera/camera_info
- /tag_detections_image

/tag_detections: the same information as provided by the /tf topic but as a custom
message carrying the tag ID(s), size(s) and
geometry_msgs/PoseWithCovarianceStamped pose information (where plural
applies for tag bundles). This is always published



Results

Simulation Environment:

Real-world Environment:




Reconnaissance
Robot Demo

Gazebo: Turtlebot House


https://docs.google.com/file/d/1Hfe4v5nhGsanN7Kqn8JsqU-Q6Bbpkhoc/preview

Reconnaissance
Robot Demo

Location: Hurtig Hall
Date: 04/17/24


https://docs.google.com/file/d/1ojPq4bCYc7DhbbvHcUkPWgjhOy1zyZ7O/preview

Future Scope & Extensions:

AprilTag Pose seeking

Scalable to a Larger Environment

Victim Detection Vision Pipeline to replace AprilTag Detection
AprilTag Pose Estimation using Factor Graphs

Github: https://github.com/arjunjyothieswarb/MR FinalProject/



https://github.com/arjunjyothieswarb/MR_FinalProject/

