Leo Explore: Reconnaissance Robot

EECE 5550 Mobile Robotics Final Project Report

Bhanu Prasad AJ
Northeastern University
M.S. in Robotics

Abhishek Uddaraju
Northeastern University
M.S. in Robotics

1. INTRODUCTION AND MOTIVATION

The Reconnaissance Bot represents a
significant advancement in autonomous
navigation systems, particularly in the context
of exploring unknown environments.
Leveraging a sophisticated Navigation stack
built on frontier exploration principles, this
package demonstrates remarkable capabilities
in traversing uncharted territories while
efficiently mapping the surroundings. By
seamlessly integrating with Simultaneous
Localization and Mapping (SLAM) algorithms,
the Reconnaissance Bot obtains crucial spatial
information essential for effective exploration.

Leveraging a well-designed Navigation
stack divided into three modules, it showcases
unparalleled capabilities in traversing uncharted
territories while efficiently mapping the
surroundings. The frontier server, employing a
K-means clustering algorithm, identifies
frontier points for exploration, guiding the
robot towards unexplored regions. The Global
Planner, utilizing an adaptation of the A-star
algorithm, generates optimal paths through the
environment, enabling efficient exploration and
mapping. Complementing these modules, the
Local Planner incorporates a Model Predictive
Path Integral approach, ensuring agile and
obstacle-aware motion planning in complex
environments.

The motivation behind the development of
the Reconnaissance Bot stems from the
pressing need for autonomous systems capable
of safely and efficiently navigating unfamiliar
terrain. In scenarios such as surveying unsafe
disaster-stricken environments or conducting
reconnaissance missions in military-active
regions, traditional exploration methods are
often impractical or hazardous for human
operators. Therefore, the deployment of robotic
platforms equipped with advanced navigation
capabilities becomes paramount in mitigating
risks and gathering essential data.

Atharva Jamsandekar
Northeastern University
M.S. in Robotics

Jiatong Wu
Northeastern University
M.S. in Robotics

Yijian Huang
Northeastern University
M.S. in Robotics

The successful testing of the
Reconnaissance Bot on the TurtleBot3 Burger
platform underscores its practical viability and
adaptability to real-world scenarios. As a result,
this package holds immense promise in
revolutionizing the way autonomous systems
navigate and explore unknown environments,
thereby contributing to enhanced safety,
efficiency, and effectiveness across diverse
fields of application.

1I. PROPOSED SOLUTION
A. Architecture

As a reconnaissance robot, Leo must possess
the ability to locate itself at all times, generate a
map of its surroundings, autonomously identify
unexplored areas, estimate the next goal to
optimally explore the environment and navigate
its way to reach the goal efficiently and
effectively. For this to work, Leo needs a
proper system of control flow to make sure the
operations listed above are executed smoothly
and seamlessly.

Since the scope of this project limits itself to
the planning aspect of the navigation stack, the
task of Localization and Mapping the
environment is delegated by simply using the
existing turtlebot SLAM packages and hence
will not be discussed in detail.

In the solution proposed, Leo employs a
top-down control flow, where the Global
Planner and Local Planner are implemented as
nodes while the Frontier exploration is
implemented as a service. The Frontier
exploration server is responsible for generating
goals to explore the map, the global planner
node generates a path that connects Leo’s
current position with a goal. The local planner

will command Leo’s velocity to reach the
required pose.

—{— N——— ==l

Fig.1: A snap of the ROS node graph

The process starts at the global planner
node, which sends a request to the frontier
server to receive a new goal. The global
planner processes it and publishes the
immediate next target pose to the local planner.
The global planner constantly refreshes the path
and does not request for another goal until the
current goal is reached or is determined to be
unreachable. Not unlike the global planner, the
local planner receives the next target pose and
latches on to it until the target is reached. Once
the target pose is reached, the local planner
latches on to the latest next target pose.

Fig.2: The software system architecture

In order to make the operation of switching
to a new exploration goal seamless, the global
planner sends a request to the frontier
exploration server when Leo is a certain
distance away from the current exploration
goal. This is done so that by the time Leo
reaches the current exploration goal, the path to
the goal produced by the frontier server is
already generated by the global planner and is
published to the local planner.

B. Frontier Server

The exploration algorithm used by the
exploration/navigation stack of Leo is directly
derived from the one proposed by [1]. This
algorithm was chosen over the other popular
frontier exploration algorithms due to its
feasibility and simplicity .

The method suggested in [1] involves 2
simple steps to determine the next goal in order
to explore more of the surroundings.

(1) Selecting frontier candidates: The basis
for selecting points on the frontier to be
candidates is that the point should promise a

chance to increase the information that the
robot has about its surroundings while also
being reachable.

(2) Clustering the candidates: The clustering
is done based on distance-based connected
component method. The centroids of the
clusters are determined and a centroid is chosen
through some selection criteria and becomes
the next exploration goal.

——
‘_

The exploration algorithm used by Leo also
shares the first step with the method proposed
in [1], which is to select eligible candidates
from all the frontier points. This is done by
checking the 5x5 neighborhood of each cell. If
the neighborhood contain any occupied region,
the cell is rejected. The cell is eligible to be a
candidate if the ratio between the free cells and
unknown cells are between a set threshold.

Fig.3: Examples of frontier points from [1]

The next step is to cluster the candidates.
However, in contrast to the distance based
connected component clustering methods
proposed in [1], Leo’s exploration algorithm
makes use of K-Means clustering algorithm.

K-Means clustering algorithm partitions
candidates into a predetermined number of
clusters, each represented by a centroid
calculated as the mean position of all
candidates within that cluster. The process
involves initializing random centroids for each
cluster, assigning each candidate to the nearest
centroid based on Euclidean distance,
recalculating centroids as the mean of assigned
candidates, and iterating these steps until the
centroids stabilize. This ensures candidates
within each cluster are more similar to each
other than those in different clusters.

Once the clusters and their respective
centroids are obtained, each cluster is scored
based on the proximity and the mass of the
cluster. The proximity is defined by the
Euclidean distance between Leo’s current
position and the position of the centroid. The
mass of the cluster is given simply by the
number of candidates belonging to the cluster.
The score function is a weighted sum of mass
and the inverse of proximity. The cluster with
the highest score is selected.

One of the limitations of the method
proposed in [1] is that the derived exploration

goal is not guaranteed to be reachable. The
paper suggests circumventing this limitation by
trying to resolve this at the global and local
planner layers.

Instead of resolving this at the planner level,
Leo uses a different approach to resolve this
issue, instead of setting the centroid of the
selected cluster to be the next exploration goal,
a random candidate belonging to the selected
cluster is chosen to be the next.

C. Global Planner

Leo’s global planner uses the A-Star
algorithm. The decision to go with A-star over
other path-planning algorithms can be
explained using the simplicity and effectiveness
of the algorithm.

A-Star (A*) algorithm is widely used in path
planning and graph search problems. It is the
heuristic search algorithm that finds the optimal
path from the starting point to the endpoint by
combining a heuristic function and a cost
function. The key components of the A-Star
algorithm are the cost function and the heuristic
function. The cost function (g) represents the
actual path cost from the starting point to the
current node, while the heuristic function (h)
estimates the minimum path cost from the
current node to the goal. A-Star uses a total cost
function, f = g + h, to evaluate the path's quality
and to find the optimal path in the shortest time.

In this project, we use distance as the cost
function (g). As for the heuristic function, it
must meet specific conditions to be acceptable,
ensuring that the estimate does not exceed the
actual cost while also guiding the search
effectively. We use Euclidean distance as the
heuristic function (h) for the A-Star algorithm
applied to our robot.

In a practical program, the A-Star algorithm
is as follows. We use an open set and a closed
set to track the search process. The open set
contains nodes to be processed, while the
closed set contains nodes that have been
processed. Once all nodes are processed, the
closed set is reversed to form a path (a list of
positions) for the local planner. The steps of the
algorithm are as follows:

1) Initialization

Add the start node to the open set. Set the cost
function (g) to 0 and the heuristic function (h)
to the estimated cost to the target node.

2) Choose the Optimal Node

Calculate the sum of the cost function (g)
and the heuristic function (h) for the
surrounding grid cells in all directions (up,
down, left, right, and diagonals). If the new
f-value is less than the current value, choose the

neighboring node with the lowest total cost
function as the next node to move to.

3) Check the Target Node

If the current node is the target node, the
optimal path has been found.

4) Calculate the Path

Output the path nodes in order to a list, then
publish it to ROS.

Leo’s global planner node sends a request
to the frontier service server and receives the
next exploration goal as the response. The
global planner listens to the \tf publisher and
gets the current position of Leo with respect to
the map frame. The current position and the
exploration goal position is fed into the A*
algorithm to obtain the shortest path between
them.

This path is constantly refreshed to make
sure the path is still relevant and to account for
noisy sensor readings. As mentioned
previously, the global planner requests for the
next exploration goal once Leo is within a
certain distance of the current exploration goal.
This pipeline enables a smooth, almost zero
latency transition from the current exploration
goal to the next.

D. Local Planner

In this project, we designed and
implemented a local planner using the Model
Predictive Path Integral (MPPI) control
algorithm. The local planner's primary
objective is to generate safe and feasible
trajectories for a robotic system within its
immediate environment. In our implementation
of the MPPI control algorithm, we followed
several key steps to generate optimal
trajectories for our robotic system. These steps
can be summarized as follows:

1) Initialization

We start by initializing the system's state,
including the robot's position, orientation, and
velocity. Additionally, we define the target or
goal state that the robot aims to reach.

2) Rollout Generation

Using the current state and the MPPI
algorithm, we generate multiple trajectory
rollouts. Each rollout represents a potential path
that the robot could follow from its current state
to the goal state.

3) Rollout Evaluation

For each generated rollout, we evaluate a
cost function that captures various criteria such
as path length, smoothness, and proximity to
obstacles. This step helps us assess the quality
of each trajectory candidate.

4) Weighted Sampling

The MPPI algorithm employs weighted
sampling to select trajectories based on their
cost. Costs are assigned based on the rollout
intersection with an obstacle and the distance
from the goal position.

5) Weighted Sum of perturbations

At this crucial step, the selected trajectories
undergo a weighted sum of perturbations. This
involves adding weighted perturbations to the
nominal trajectory.

Our implementation utilized specific
parameters to control generation. Specifically,
we accounted for the following variances of
perturbations: a linear velocity variance of 0.05
m/s and an angular velocity variance of 0.3
rad/s. We set the number of rollouts to 100 and
the number of steps to 20, ensuring a
comprehensive exploration of possible
trajectories while maintaining computational
efficiency.

Perturbation Angular Velocity samples

10 025

Frequency

Fig.4: Plot of perturbations in velocity samples

Additionally, we defined the nominal
velocity as 0.8 m/s and allowed for a nominal
angular velocity range between 0 and =
radians/s, facilitating smooth and agile motion
planning.

0.0 4

Y Position

~1.0 4

T T T T T T T
-0.5 0.0 0.5 1.0 15 2.0 25
X Position

Fig.5: Plot of paths obtained through propagation

The selected perturbations can turn the robot
around when there is an obstacle ahead of the
robot only with a single iteration of MPPI this
helps us attain a real-world operation frequency
of 12 Hz. The rollouts are shown in the figure
above this is the final updated path. Overall,

our local planner implementation using MPPI
control with the specified parameters and
operating frequency showcases its capability to
generate smooth, collision-free trajectories in
real-time scenarios.

I11. REsuLTS

The testing of the package has been
bimodal, i.e., both simulation and Real-world
testing setup. The bimodal setup benefited the
iterative improvement of the package during
development. The testing was carried out using
the Gmapping algorithm in the Turtlebot3
SLAM package[2].

Fig.6: Output of the exploration and navigation stack

A. Simulation

Two simulation environments were set up in
the Gazebo simulator, a part of the Turtlebot3
Gazebo package[3]:

1) Turtlebot3 House: A hexagon-shaped
grid that visually resembles a turtle.

2) Turtlebot3 World: A Real house-like
environment.

The results of the efficacy of the
environment were calculated in terms of two
parameters: 1) Time to complete and 2) Area of
the environment mapped. The final ratio of area
mapped to the time taken is calculated and
shown for both environments (Fig x). The
calculated parameter is called the Rate of
Exploration (m”2/s). The results show that the
rate of exploration is empirically inversely
proportional to the 1.5th power of the Area of
the setup.

B. Real-World Setup

Two real-world environments were set up on
the Northeastern University campus:
1) 4x4 Maze World:
2) Hurtig Hall Corridor:
The demonstration videos show the efficacy
of Leo Explore in Real World Environment,
refer to Section VI.

IV. CONCLUSION

In conclusion, this research marks a
significant milestone in the development of
autonomous navigation systems through the
creation of the Reconnaissance Bot. While our
exploration has demonstrated its efficacy in
navigating unknown environments and
integrating seamlessly with the TurtleBot3
platform, several critical areas for extension
have been identified. Chief among these is the
imperative to address scalability concerns
inherent to the global planner, map size
management, and frontier calculation
mechanisms.

Efforts towards scalability must prioritize
the optimization of the global planner to
accommodate larger environments without
compromising efficiency or accuracy. This
entails exploring advanced algorithms or
techniques capable of efficiently generating
optimal paths across expansive terrain.
Concurrently, strategies for managing map size
must be devised to ensure the system remains
lightweight and responsive, even when
operating in environments with extensive
spatial coverage.

Addressing these scalability challenges will
be pivotal in unlocking the full potential of the
Reconnaissance Bot for applications spanning
disaster response to military reconnaissance.
Through continued research and development
efforts in these areas, we can propel
autonomous navigation technology towards
greater versatility, adaptability, and real-world
impact.

V. Work DISTRIBUTION DIAGRAM

Global Planner Bhanu Prasad AJ
Jiatong Wu
Yijian Huang
Local Planner Abhishek Uddaraju

Atharva Jamsandekar

April Tag Abhishek Uddaraju

Atharva Jamsandekar

VI. VipEO LINK
https: t tvIsYrZ6wk

VII. REFERENCES

[1] Erkan Uslu, Furkan Cakmak, Muhammet
Balcilar, Attila Akinci, Mehmet Fatih
Amasyali, and S. Yavuz, “Implementation of
frontier-based exploration algorithm for an
autonomous robot,” Sep. 2015, doi:
https://doi.org/10.1109/inista.2015.7276723

[2] “turtlebot3 slam - ROS Wiki,” wiki.ros.org.
http://wiki.ros.org/turtlebot3 slam

[3] “turtlebot3 gazebo - ROS
wiki.ros.org.

http://wiki.ros.org/turtlebot3 gazebo
[4] Williams, Grady, Andrew Aldrich, and

Evangelos Theodorou. "Model predictive path
integral control using covariance variable

Wiki,”

importance sampling." arXiv preprint
arXiv:1509.01149 (2015).
Enviro | Area Time | Rate of

nment | Covered | (in s) | Exploration

(in m”"2) (in m”2/s)

Work Participation

House | 21.88 74s [0.30

Bhanu Prasad AJ
Jiatong Wu

Yijian Huang
Abhishek Uddaraju
Atharva Jamsandekar

Hardware Set Up

World | 83.82 560s | 0.15

Bhanu Prasad AJ
Jiatong Wu

Yijian Huang
Abhishek Uddaraju
Atharva Jamsandekar

Software Set Up &
Camera Calibration

Bhanu Prasad AJ
Yijian Huang

Frontier Exploration

https://youtu.be/fyIsYrZ6wks
http://wiki.ros.org/turtlebot3_gazebo

